无刷直流电机和Rikitake系统不确定复杂网络的有限时间投影同步控制

Meng Zhang, Min Han
{"title":"无刷直流电机和Rikitake系统不确定复杂网络的有限时间投影同步控制","authors":"Meng Zhang, Min Han","doi":"10.1109/ICACI.2016.7449811","DOIUrl":null,"url":null,"abstract":"The finite-time projective synchronization control of two uncertain complex networks with Brushless DC motor (BLDCM) and Rikitake system is investigated. Based on the finite-time stability theory and adaptive technique, a novel and useful finite-time synchronization control criteria is proposed. The effective synchronization controller and corresponding update laws are designed to guarantee projective synchronization control of the two uncertain complex networks in a given finite-time. Simultaneously, the unknown parameters of node dynamics are estimated successfully and the uncertain topological structure tend to the proper constants. Especially, the proposed approach can rapidly track the network topology changes well and the weight topological structure values are automatically adapted to the appropriate constants in the process of synchronization control. To validate the proposed method, introduced the Brushless DC motor (BLDCM) and Rikitake system with uncertainties as the nodes of the networks, and numerical simulations are given to illustrate the theoretical results.","PeriodicalId":211040,"journal":{"name":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite-time projective synchronization control of uncertain complex networks with brushless DC motor and Rikitake system\",\"authors\":\"Meng Zhang, Min Han\",\"doi\":\"10.1109/ICACI.2016.7449811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The finite-time projective synchronization control of two uncertain complex networks with Brushless DC motor (BLDCM) and Rikitake system is investigated. Based on the finite-time stability theory and adaptive technique, a novel and useful finite-time synchronization control criteria is proposed. The effective synchronization controller and corresponding update laws are designed to guarantee projective synchronization control of the two uncertain complex networks in a given finite-time. Simultaneously, the unknown parameters of node dynamics are estimated successfully and the uncertain topological structure tend to the proper constants. Especially, the proposed approach can rapidly track the network topology changes well and the weight topological structure values are automatically adapted to the appropriate constants in the process of synchronization control. To validate the proposed method, introduced the Brushless DC motor (BLDCM) and Rikitake system with uncertainties as the nodes of the networks, and numerical simulations are given to illustrate the theoretical results.\",\"PeriodicalId\":211040,\"journal\":{\"name\":\"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI.2016.7449811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2016.7449811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了由无刷直流电动机(BLDCM)和Rikitake系统组成的两个不确定复杂网络的有限时间投影同步控制。基于有限时间稳定性理论和自适应技术,提出了一种新颖实用的有限时间同步控制准则。设计了有效的同步控制器和相应的更新律,保证了两个不确定复杂网络在给定有限时间内的投影同步控制。同时,成功地估计了节点动力学的未知参数,使不确定的拓扑结构趋于合适的常数。特别是,该方法能够快速跟踪网络拓扑结构的变化,并在同步控制过程中自动将权重拓扑结构值调整为合适的常数。为了验证所提出的方法,将无刷直流电动机(BLDCM)和具有不确定性的Rikitake系统作为网络节点,并通过数值仿真验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite-time projective synchronization control of uncertain complex networks with brushless DC motor and Rikitake system
The finite-time projective synchronization control of two uncertain complex networks with Brushless DC motor (BLDCM) and Rikitake system is investigated. Based on the finite-time stability theory and adaptive technique, a novel and useful finite-time synchronization control criteria is proposed. The effective synchronization controller and corresponding update laws are designed to guarantee projective synchronization control of the two uncertain complex networks in a given finite-time. Simultaneously, the unknown parameters of node dynamics are estimated successfully and the uncertain topological structure tend to the proper constants. Especially, the proposed approach can rapidly track the network topology changes well and the weight topological structure values are automatically adapted to the appropriate constants in the process of synchronization control. To validate the proposed method, introduced the Brushless DC motor (BLDCM) and Rikitake system with uncertainties as the nodes of the networks, and numerical simulations are given to illustrate the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信