{"title":"有机介电材料中自愈击穿的物理和化学过程建模","authors":"J. Kammermaier, G. Rittmayer, S. Birkle","doi":"10.1109/ICSD.1989.69245","DOIUrl":null,"url":null,"abstract":"A model is developed for a theoretical description of self-healing breakdowns in organic dielectrics. The spatiotemporal distribution of potential and current during the self-healing breakdown is first investigated, and then the energy converted for the evaporation and ionization of electrode metal as well as for gas-dynamic decomposition of the material is determined. The gas formation results may be used to compute graphite deposition in the insulating areas.<<ETX>>","PeriodicalId":184126,"journal":{"name":"Proceedings of the 3rd International Conference on Conduction and Breakdown in Solid Dielectrics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modelling of physical and chemical processes in self-healing breakdowns in organic dielectric materials\",\"authors\":\"J. Kammermaier, G. Rittmayer, S. Birkle\",\"doi\":\"10.1109/ICSD.1989.69245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A model is developed for a theoretical description of self-healing breakdowns in organic dielectrics. The spatiotemporal distribution of potential and current during the self-healing breakdown is first investigated, and then the energy converted for the evaporation and ionization of electrode metal as well as for gas-dynamic decomposition of the material is determined. The gas formation results may be used to compute graphite deposition in the insulating areas.<<ETX>>\",\"PeriodicalId\":184126,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Conduction and Breakdown in Solid Dielectrics\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Conduction and Breakdown in Solid Dielectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSD.1989.69245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Conduction and Breakdown in Solid Dielectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSD.1989.69245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelling of physical and chemical processes in self-healing breakdowns in organic dielectric materials
A model is developed for a theoretical description of self-healing breakdowns in organic dielectrics. The spatiotemporal distribution of potential and current during the self-healing breakdown is first investigated, and then the energy converted for the evaporation and ionization of electrode metal as well as for gas-dynamic decomposition of the material is determined. The gas formation results may be used to compute graphite deposition in the insulating areas.<>