物联网系统监测系统及故障预测

Radia Bendimerad, K. Smiri, A. Jemai
{"title":"物联网系统监测系统及故障预测","authors":"Radia Bendimerad, K. Smiri, A. Jemai","doi":"10.1109/AICCSA53542.2021.9686915","DOIUrl":null,"url":null,"abstract":"With the emerging Internet of Things (IoT), the real-time applications are increasingly deployed on IoT systems using Multi Processing System On Chip (MPSoC). Real-time applications have strict temporal constraints, and are not fault-tolerant. Any defective IoT device can lead to serious faults such as data loss or even application failure. It is possible to predict the defective IoT device using a predictive model to prevent faults. Data on CPU load, consumption and thermal state of devices are correlated with the state of the device. In this paper, we show how to classify the state of MPSoC IoT Devices using a decision tree with ID3 algorithm as a split heuristic based on hardware measurement features.","PeriodicalId":423896,"journal":{"name":"2021 IEEE/ACS 18th International Conference on Computer Systems and Applications (AICCSA)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Monitoring System and Faults Prediction for Internet of Things System\",\"authors\":\"Radia Bendimerad, K. Smiri, A. Jemai\",\"doi\":\"10.1109/AICCSA53542.2021.9686915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the emerging Internet of Things (IoT), the real-time applications are increasingly deployed on IoT systems using Multi Processing System On Chip (MPSoC). Real-time applications have strict temporal constraints, and are not fault-tolerant. Any defective IoT device can lead to serious faults such as data loss or even application failure. It is possible to predict the defective IoT device using a predictive model to prevent faults. Data on CPU load, consumption and thermal state of devices are correlated with the state of the device. In this paper, we show how to classify the state of MPSoC IoT Devices using a decision tree with ID3 algorithm as a split heuristic based on hardware measurement features.\",\"PeriodicalId\":423896,\"journal\":{\"name\":\"2021 IEEE/ACS 18th International Conference on Computer Systems and Applications (AICCSA)\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACS 18th International Conference on Computer Systems and Applications (AICCSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICCSA53542.2021.9686915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACS 18th International Conference on Computer Systems and Applications (AICCSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICCSA53542.2021.9686915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着物联网(IoT)的兴起,实时应用越来越多地部署在使用多处理片上系统(MPSoC)的物联网系统上。实时应用程序有严格的时间约束,不能容错。任何有缺陷的物联网设备都可能导致数据丢失甚至应用程序失败等严重故障。可以使用预测模型来预测有缺陷的物联网设备以防止故障。设备的CPU负载、消耗和热状态数据与设备的状态相关。在本文中,我们展示了如何使用决策树对MPSoC物联网设备的状态进行分类,决策树采用ID3算法作为基于硬件测量特征的分割启发式算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Monitoring System and Faults Prediction for Internet of Things System
With the emerging Internet of Things (IoT), the real-time applications are increasingly deployed on IoT systems using Multi Processing System On Chip (MPSoC). Real-time applications have strict temporal constraints, and are not fault-tolerant. Any defective IoT device can lead to serious faults such as data loss or even application failure. It is possible to predict the defective IoT device using a predictive model to prevent faults. Data on CPU load, consumption and thermal state of devices are correlated with the state of the device. In this paper, we show how to classify the state of MPSoC IoT Devices using a decision tree with ID3 algorithm as a split heuristic based on hardware measurement features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信