关于无穷集的可计算性和可跟踪性

M. Bojanczyk, Szymon Toruńczyk
{"title":"关于无穷集的可计算性和可跟踪性","authors":"M. Bojanczyk, Szymon Toruńczyk","doi":"10.1145/3209108.3209190","DOIUrl":null,"url":null,"abstract":"We propose a definition for computable functions on hereditarily definable sets. Such sets are possibly infinite data structures that can be defined using a fixed underlying logical structure, such as (N, =). We show that, under suitable assumptions on the underlying structure, a programming language called definable while programs captures exactly the computable functions. Next, we introduce a complexity class called fixed-dimension polynomial time, which intuitively speaking describes polynomial computation on hereditarily definable sets. We show that this complexity class contains all functions computed by definable while programs with suitably defined resource bounds. Proving the converse inclusion would prove that Choiceless Polynomial Time with Counting captures polynomial time on finite graphs.","PeriodicalId":389131,"journal":{"name":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On computability and tractability for infinite sets\",\"authors\":\"M. Bojanczyk, Szymon Toruńczyk\",\"doi\":\"10.1145/3209108.3209190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a definition for computable functions on hereditarily definable sets. Such sets are possibly infinite data structures that can be defined using a fixed underlying logical structure, such as (N, =). We show that, under suitable assumptions on the underlying structure, a programming language called definable while programs captures exactly the computable functions. Next, we introduce a complexity class called fixed-dimension polynomial time, which intuitively speaking describes polynomial computation on hereditarily definable sets. We show that this complexity class contains all functions computed by definable while programs with suitably defined resource bounds. Proving the converse inclusion would prove that Choiceless Polynomial Time with Counting captures polynomial time on finite graphs.\",\"PeriodicalId\":389131,\"journal\":{\"name\":\"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3209108.3209190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3209108.3209190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

给出了遗传可定义集合上可计算函数的一个定义。这样的集合可能是无限的数据结构,可以使用固定的底层逻辑结构来定义,例如(N, =)。我们表明,在对底层结构的适当假设下,一种称为可定义的编程语言而程序恰好捕获可计算函数。接下来,我们引入一个称为固定维多项式时间的复杂度类,它直观地描述了在遗传可定义集合上的多项式计算。我们证明了这个复杂度类包含了所有由具有适当定义的资源边界的可定义while程序计算的函数。证明逆包含将证明计数无选择多项式时间捕获有限图上的多项式时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On computability and tractability for infinite sets
We propose a definition for computable functions on hereditarily definable sets. Such sets are possibly infinite data structures that can be defined using a fixed underlying logical structure, such as (N, =). We show that, under suitable assumptions on the underlying structure, a programming language called definable while programs captures exactly the computable functions. Next, we introduce a complexity class called fixed-dimension polynomial time, which intuitively speaking describes polynomial computation on hereditarily definable sets. We show that this complexity class contains all functions computed by definable while programs with suitably defined resource bounds. Proving the converse inclusion would prove that Choiceless Polynomial Time with Counting captures polynomial time on finite graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信