基于离散小波变换、离散傅立叶变换和基于k-means聚类方法的人工神经网络的优质褐煤检测

S. A. Korkmaz, Furkan Esmeray
{"title":"基于离散小波变换、离散傅立叶变换和基于k-means聚类方法的人工神经网络的优质褐煤检测","authors":"S. A. Korkmaz, Furkan Esmeray","doi":"10.1109/ISDFS.2018.8355326","DOIUrl":null,"url":null,"abstract":"In this article, the lignite coal datas in the Kalburçayı area of the Sivas-Kangal Basin have been used. This original data obtained from Kalburçayı area of the Sivas-Kangal Basin consists of 66 observations in the lignite coal area, including lignite quality parameters such as moisture content, ash, sulfur content and calorific value. These lignite coal datas have been clustered in two group with k-means method according to calori values. This clustering lignite coal data is classified by the Artifical Neural Network (ANN) classifier. In addition, Discrete Fourier Transform (DFT) and Discrete Wavelet Transform (DWT) have been applied to coal data for ANN classifiers. DFT_ANN, DWT_ANN, and ANN classification success results are compared. The highest classification success rate was found by DWT_ANN method.","PeriodicalId":154279,"journal":{"name":"2018 6th International Symposium on Digital Forensic and Security (ISDFS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Quality lignite coal detection with discrete wavelet transform, discrete fourier transform, and ANN based on k-means clustering method\",\"authors\":\"S. A. Korkmaz, Furkan Esmeray\",\"doi\":\"10.1109/ISDFS.2018.8355326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the lignite coal datas in the Kalburçayı area of the Sivas-Kangal Basin have been used. This original data obtained from Kalburçayı area of the Sivas-Kangal Basin consists of 66 observations in the lignite coal area, including lignite quality parameters such as moisture content, ash, sulfur content and calorific value. These lignite coal datas have been clustered in two group with k-means method according to calori values. This clustering lignite coal data is classified by the Artifical Neural Network (ANN) classifier. In addition, Discrete Fourier Transform (DFT) and Discrete Wavelet Transform (DWT) have been applied to coal data for ANN classifiers. DFT_ANN, DWT_ANN, and ANN classification success results are compared. The highest classification success rate was found by DWT_ANN method.\",\"PeriodicalId\":154279,\"journal\":{\"name\":\"2018 6th International Symposium on Digital Forensic and Security (ISDFS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 6th International Symposium on Digital Forensic and Security (ISDFS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDFS.2018.8355326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Symposium on Digital Forensic and Security (ISDFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDFS.2018.8355326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文利用了西瓦斯—康加尔盆地卡尔布尔帕拉扎耶尔地区的褐煤资料。该原始数据来自Sivas-Kangal盆地kalburayayya地区,由褐煤区66个观测数据组成,包括褐煤质量参数,如水分含量、灰分、硫含量和热值。根据热量值,用k-means方法将这些褐煤数据聚为两组。该聚类方法采用人工神经网络分类器对褐煤数据进行分类。此外,将离散傅立叶变换(DFT)和离散小波变换(DWT)应用于煤数据的人工神经网络分类。比较DFT_ANN、DWT_ANN和ANN分类成功结果。DWT_ANN方法分类成功率最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quality lignite coal detection with discrete wavelet transform, discrete fourier transform, and ANN based on k-means clustering method
In this article, the lignite coal datas in the Kalburçayı area of the Sivas-Kangal Basin have been used. This original data obtained from Kalburçayı area of the Sivas-Kangal Basin consists of 66 observations in the lignite coal area, including lignite quality parameters such as moisture content, ash, sulfur content and calorific value. These lignite coal datas have been clustered in two group with k-means method according to calori values. This clustering lignite coal data is classified by the Artifical Neural Network (ANN) classifier. In addition, Discrete Fourier Transform (DFT) and Discrete Wavelet Transform (DWT) have been applied to coal data for ANN classifiers. DFT_ANN, DWT_ANN, and ANN classification success results are compared. The highest classification success rate was found by DWT_ANN method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信