光谱聚类分割彩色图像的色彩空间选择

L. Busin, J. Shi, N. Vandenbroucke, L. Macaire
{"title":"光谱聚类分割彩色图像的色彩空间选择","authors":"L. Busin, J. Shi, N. Vandenbroucke, L. Macaire","doi":"10.1109/ICSIPA.2009.5478603","DOIUrl":null,"url":null,"abstract":"In this paper, we propose to segment color images by pixel clustering in a selected color space. This color space is selected among a set of classical color spaces according to a specific criterion based on a spectral clustering analysis. The clusters are determined by analyzing the 3D-histogram of the image coded in the selected color space thanks to a spectral clustering method. This scheme can identify clusters with complex shapes in the color space without any other post/pre-processing stages.","PeriodicalId":400165,"journal":{"name":"2009 IEEE International Conference on Signal and Image Processing Applications","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Color space selection for color image segmentation by spectral clustering\",\"authors\":\"L. Busin, J. Shi, N. Vandenbroucke, L. Macaire\",\"doi\":\"10.1109/ICSIPA.2009.5478603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose to segment color images by pixel clustering in a selected color space. This color space is selected among a set of classical color spaces according to a specific criterion based on a spectral clustering analysis. The clusters are determined by analyzing the 3D-histogram of the image coded in the selected color space thanks to a spectral clustering method. This scheme can identify clusters with complex shapes in the color space without any other post/pre-processing stages.\",\"PeriodicalId\":400165,\"journal\":{\"name\":\"2009 IEEE International Conference on Signal and Image Processing Applications\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Signal and Image Processing Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA.2009.5478603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Signal and Image Processing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2009.5478603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

在本文中,我们提出在选定的颜色空间中通过像素聚类对彩色图像进行分割。根据光谱聚类分析的特定标准,从一组经典色彩空间中选择该色彩空间。利用光谱聚类方法,通过分析在选定颜色空间编码的图像的3d直方图来确定聚类。该方案可以识别色彩空间中具有复杂形状的簇,而无需任何其他后期/预处理阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Color space selection for color image segmentation by spectral clustering
In this paper, we propose to segment color images by pixel clustering in a selected color space. This color space is selected among a set of classical color spaces according to a specific criterion based on a spectral clustering analysis. The clusters are determined by analyzing the 3D-histogram of the image coded in the selected color space thanks to a spectral clustering method. This scheme can identify clusters with complex shapes in the color space without any other post/pre-processing stages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信