基于MCMC贝叶斯框架的SWAT模型参数不确定性表征——以纳林河流域为例

C. Chen, J. Liu, G. Huang, Y. Li
{"title":"基于MCMC贝叶斯框架的SWAT模型参数不确定性表征——以纳林河流域为例","authors":"C. Chen, J. Liu, G. Huang, Y. Li","doi":"10.1109/APCT55107.2022.00010","DOIUrl":null,"url":null,"abstract":"Analysis of parameter uncertainty in distributed watershed model is a worldwide challenge. In this study, The Differential Evolution Adaptive Metropolis (DREAM) technique is developed to analyse the uncertainty of Soil and Water Assessment Tool (SWAT) model parameters. SWAT is used for providing the basic hydrologic simulation, DREAM algorithm is employed to approximate the posterior distributions of model parameters with Bayesian inference. DREAM is then used to capture the uncertainty and implications of parameters in the Naryn River Basin (in Central Asia). The posterior distribution of parameters is obtained. Results shows that: (i) the posterior sampling results of DREAM algorithm are satisfactory; (ii) concentrated precipitation during rainy season generates more runoff; (iii) more precipitation exists in the form of snowfall.","PeriodicalId":237645,"journal":{"name":"2022 Asia-Pacific Computer Technologies Conference (APCT)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Parameter Uncertainty in SWAT Model using MCMC Bayesian Framework: The Case of Naryn River Basin\",\"authors\":\"C. Chen, J. Liu, G. Huang, Y. Li\",\"doi\":\"10.1109/APCT55107.2022.00010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analysis of parameter uncertainty in distributed watershed model is a worldwide challenge. In this study, The Differential Evolution Adaptive Metropolis (DREAM) technique is developed to analyse the uncertainty of Soil and Water Assessment Tool (SWAT) model parameters. SWAT is used for providing the basic hydrologic simulation, DREAM algorithm is employed to approximate the posterior distributions of model parameters with Bayesian inference. DREAM is then used to capture the uncertainty and implications of parameters in the Naryn River Basin (in Central Asia). The posterior distribution of parameters is obtained. Results shows that: (i) the posterior sampling results of DREAM algorithm are satisfactory; (ii) concentrated precipitation during rainy season generates more runoff; (iii) more precipitation exists in the form of snowfall.\",\"PeriodicalId\":237645,\"journal\":{\"name\":\"2022 Asia-Pacific Computer Technologies Conference (APCT)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Asia-Pacific Computer Technologies Conference (APCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCT55107.2022.00010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asia-Pacific Computer Technologies Conference (APCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCT55107.2022.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分布式流域模型参数的不确定性分析是一个世界性的难题。本文采用差分进化自适应大都市(DREAM)技术对SWAT模型参数的不确定性进行分析。利用SWAT算法提供基本的水文模拟,利用DREAM算法用贝叶斯推理近似模型参数的后验分布。然后使用DREAM来捕获纳林河流域(中亚)参数的不确定性和影响。得到了参数的后验分布。结果表明:(1)DREAM算法的后验抽样结果令人满意;(2)雨季降水集中,径流量增加;(iii)以降雪形式存在的降水较多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of Parameter Uncertainty in SWAT Model using MCMC Bayesian Framework: The Case of Naryn River Basin
Analysis of parameter uncertainty in distributed watershed model is a worldwide challenge. In this study, The Differential Evolution Adaptive Metropolis (DREAM) technique is developed to analyse the uncertainty of Soil and Water Assessment Tool (SWAT) model parameters. SWAT is used for providing the basic hydrologic simulation, DREAM algorithm is employed to approximate the posterior distributions of model parameters with Bayesian inference. DREAM is then used to capture the uncertainty and implications of parameters in the Naryn River Basin (in Central Asia). The posterior distribution of parameters is obtained. Results shows that: (i) the posterior sampling results of DREAM algorithm are satisfactory; (ii) concentrated precipitation during rainy season generates more runoff; (iii) more precipitation exists in the form of snowfall.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信