基于肯德尔相关性的僵尸网络活动检测特征选择

Dandy Pramana Hostiadi, Yohanes Priyo Atmojo, Roy Rudolf Huizen, I. M. D. Susila, Gede A. Pradipta, I. M. Liandana
{"title":"基于肯德尔相关性的僵尸网络活动检测特征选择","authors":"Dandy Pramana Hostiadi, Yohanes Priyo Atmojo, Roy Rudolf Huizen, I. M. D. Susila, Gede A. Pradipta, I. M. Liandana","doi":"10.1109/CENIM56801.2022.10037525","DOIUrl":null,"url":null,"abstract":"Botnets are a dangerous threat to computer networks that uses malicious code to infect computer networks. Thus, the right system security model is needed to detect botnet attack activities accurately. Several previous studies have introduced a botnet detection model using mining-based, but it requires the correct approach to obtain the optimal performance. This paper proposes a botnet detection model by improving feature selection using correlation-based analysis. The aim is to improve accuracy detection by analyzing features with solid correlations that can be used for machine learning classification models. The proposed model consists of 4 main parts: data splitting pre-processing, classification process, and evaluation. The experiment used public datasets, namely CTU-13 datasets containing botnet activity. The experiment shows that the model can detect botnet activity with a detection accuracy of 99.7218%, precision of 99.1691 %, and recall of 96.6533 %. The proposed model can improve the existing botnet detection system model.","PeriodicalId":118934,"journal":{"name":"2022 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlation-Based Feature Selection on Botnet Activity Detection Using Kendall Correlation\",\"authors\":\"Dandy Pramana Hostiadi, Yohanes Priyo Atmojo, Roy Rudolf Huizen, I. M. D. Susila, Gede A. Pradipta, I. M. Liandana\",\"doi\":\"10.1109/CENIM56801.2022.10037525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Botnets are a dangerous threat to computer networks that uses malicious code to infect computer networks. Thus, the right system security model is needed to detect botnet attack activities accurately. Several previous studies have introduced a botnet detection model using mining-based, but it requires the correct approach to obtain the optimal performance. This paper proposes a botnet detection model by improving feature selection using correlation-based analysis. The aim is to improve accuracy detection by analyzing features with solid correlations that can be used for machine learning classification models. The proposed model consists of 4 main parts: data splitting pre-processing, classification process, and evaluation. The experiment used public datasets, namely CTU-13 datasets containing botnet activity. The experiment shows that the model can detect botnet activity with a detection accuracy of 99.7218%, precision of 99.1691 %, and recall of 96.6533 %. The proposed model can improve the existing botnet detection system model.\",\"PeriodicalId\":118934,\"journal\":{\"name\":\"2022 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CENIM56801.2022.10037525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CENIM56801.2022.10037525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

僵尸网络是对计算机网络的一种危险威胁,它使用恶意代码感染计算机网络。因此,需要正确的系统安全模型来准确检测僵尸网络攻击活动。以前的一些研究已经引入了基于挖掘的僵尸网络检测模型,但它需要正确的方法来获得最佳性能。本文提出了一种基于相关性分析改进特征选择的僵尸网络检测模型。目的是通过分析可用于机器学习分类模型的具有可靠相关性的特征来提高准确性检测。该模型主要由数据分割预处理、分类过程和评价四个部分组成。实验使用公共数据集,即包含僵尸网络活动的CTU-13数据集。实验表明,该模型检测僵尸网络活动的准确率为99.7218%,精密度为99.1691%,召回率为96.6533%。该模型可以改进现有的僵尸网络检测系统模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correlation-Based Feature Selection on Botnet Activity Detection Using Kendall Correlation
Botnets are a dangerous threat to computer networks that uses malicious code to infect computer networks. Thus, the right system security model is needed to detect botnet attack activities accurately. Several previous studies have introduced a botnet detection model using mining-based, but it requires the correct approach to obtain the optimal performance. This paper proposes a botnet detection model by improving feature selection using correlation-based analysis. The aim is to improve accuracy detection by analyzing features with solid correlations that can be used for machine learning classification models. The proposed model consists of 4 main parts: data splitting pre-processing, classification process, and evaluation. The experiment used public datasets, namely CTU-13 datasets containing botnet activity. The experiment shows that the model can detect botnet activity with a detection accuracy of 99.7218%, precision of 99.1691 %, and recall of 96.6533 %. The proposed model can improve the existing botnet detection system model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信