GF(2m)上偶型高斯正态基的低空间复杂度乘法器

Q. Su, Jeng-Shyang Pan, Chun-Sheng Yang
{"title":"GF(2m)上偶型高斯正态基的低空间复杂度乘法器","authors":"Q. Su, Jeng-Shyang Pan, Chun-Sheng Yang","doi":"10.1109/CMCSN.2016.19","DOIUrl":null,"url":null,"abstract":"Gaussian normal basis in multiplier design perform excellent, matrix-vector decomposition is most important part in multiplication algorithm. In this paper, we proposed a symmetric matrix-vector product method, theoretical analysis shows that the proposed scheme is less space complexity comparing to the traditional TMVP approach. The main advantage of the proposed multiplier is can be designed and implementationin in a smaller size and we can reduce a large number of AND gates.","PeriodicalId":153377,"journal":{"name":"2016 Third International Conference on Computing Measurement Control and Sensor Network (CMCSN)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low Space Complexity Multiplier for Even-Type Gaussian Normal Basis over GF(2m)\",\"authors\":\"Q. Su, Jeng-Shyang Pan, Chun-Sheng Yang\",\"doi\":\"10.1109/CMCSN.2016.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gaussian normal basis in multiplier design perform excellent, matrix-vector decomposition is most important part in multiplication algorithm. In this paper, we proposed a symmetric matrix-vector product method, theoretical analysis shows that the proposed scheme is less space complexity comparing to the traditional TMVP approach. The main advantage of the proposed multiplier is can be designed and implementationin in a smaller size and we can reduce a large number of AND gates.\",\"PeriodicalId\":153377,\"journal\":{\"name\":\"2016 Third International Conference on Computing Measurement Control and Sensor Network (CMCSN)\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Third International Conference on Computing Measurement Control and Sensor Network (CMCSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CMCSN.2016.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Third International Conference on Computing Measurement Control and Sensor Network (CMCSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMCSN.2016.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高斯正态基在乘法器设计中表现优异,矩阵-向量分解是乘法算法中最重要的部分。本文提出了一种对称矩阵向量积方法,理论分析表明,与传统的TMVP方法相比,该方法具有更小的空间复杂度。所提出的乘法器的主要优点是可以设计和实现在一个较小的尺寸,我们可以减少大量的与门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low Space Complexity Multiplier for Even-Type Gaussian Normal Basis over GF(2m)
Gaussian normal basis in multiplier design perform excellent, matrix-vector decomposition is most important part in multiplication algorithm. In this paper, we proposed a symmetric matrix-vector product method, theoretical analysis shows that the proposed scheme is less space complexity comparing to the traditional TMVP approach. The main advantage of the proposed multiplier is can be designed and implementationin in a smaller size and we can reduce a large number of AND gates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信