Youngsoo Kim, Shounan An, Youngbak Jo, Seungje Park, Shindong Kang, Insoo Oh, D. Kim
{"title":"多任务音频驱动的面部动画","authors":"Youngsoo Kim, Shounan An, Youngbak Jo, Seungje Park, Shindong Kang, Insoo Oh, D. Kim","doi":"10.1145/3306214.3338541","DOIUrl":null,"url":null,"abstract":"We propose an effective method to solve multiple characters audio-driven facial animation (ADFA) problem in an end-to-end fashion via deep neural network. In this paper each character's ADFA considered as a single task, and our goal is to solve ADFA problem in multi-task setting. To this end, we present MulTaNet for multi-task audio-driven facial animation (MTADFA), which learns a cross-task unified feature mapping from audio-to-vertex that capture shared information across multiple related tasks, while try to find within-task prediction network encoding character-dependent topological information. Extensive experiments indicate that MulTaNet generates more natural-looking and stable facial animation, meanwhile shows better generalization capacity to unseen languages compare to previous approaches.","PeriodicalId":216038,"journal":{"name":"ACM SIGGRAPH 2019 Posters","volume":"564 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-task audio-driven facial animation\",\"authors\":\"Youngsoo Kim, Shounan An, Youngbak Jo, Seungje Park, Shindong Kang, Insoo Oh, D. Kim\",\"doi\":\"10.1145/3306214.3338541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an effective method to solve multiple characters audio-driven facial animation (ADFA) problem in an end-to-end fashion via deep neural network. In this paper each character's ADFA considered as a single task, and our goal is to solve ADFA problem in multi-task setting. To this end, we present MulTaNet for multi-task audio-driven facial animation (MTADFA), which learns a cross-task unified feature mapping from audio-to-vertex that capture shared information across multiple related tasks, while try to find within-task prediction network encoding character-dependent topological information. Extensive experiments indicate that MulTaNet generates more natural-looking and stable facial animation, meanwhile shows better generalization capacity to unseen languages compare to previous approaches.\",\"PeriodicalId\":216038,\"journal\":{\"name\":\"ACM SIGGRAPH 2019 Posters\",\"volume\":\"564 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2019 Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3306214.3338541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2019 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3306214.3338541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We propose an effective method to solve multiple characters audio-driven facial animation (ADFA) problem in an end-to-end fashion via deep neural network. In this paper each character's ADFA considered as a single task, and our goal is to solve ADFA problem in multi-task setting. To this end, we present MulTaNet for multi-task audio-driven facial animation (MTADFA), which learns a cross-task unified feature mapping from audio-to-vertex that capture shared information across multiple related tasks, while try to find within-task prediction network encoding character-dependent topological information. Extensive experiments indicate that MulTaNet generates more natural-looking and stable facial animation, meanwhile shows better generalization capacity to unseen languages compare to previous approaches.