多任务音频驱动的面部动画

Youngsoo Kim, Shounan An, Youngbak Jo, Seungje Park, Shindong Kang, Insoo Oh, D. Kim
{"title":"多任务音频驱动的面部动画","authors":"Youngsoo Kim, Shounan An, Youngbak Jo, Seungje Park, Shindong Kang, Insoo Oh, D. Kim","doi":"10.1145/3306214.3338541","DOIUrl":null,"url":null,"abstract":"We propose an effective method to solve multiple characters audio-driven facial animation (ADFA) problem in an end-to-end fashion via deep neural network. In this paper each character's ADFA considered as a single task, and our goal is to solve ADFA problem in multi-task setting. To this end, we present MulTaNet for multi-task audio-driven facial animation (MTADFA), which learns a cross-task unified feature mapping from audio-to-vertex that capture shared information across multiple related tasks, while try to find within-task prediction network encoding character-dependent topological information. Extensive experiments indicate that MulTaNet generates more natural-looking and stable facial animation, meanwhile shows better generalization capacity to unseen languages compare to previous approaches.","PeriodicalId":216038,"journal":{"name":"ACM SIGGRAPH 2019 Posters","volume":"564 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-task audio-driven facial animation\",\"authors\":\"Youngsoo Kim, Shounan An, Youngbak Jo, Seungje Park, Shindong Kang, Insoo Oh, D. Kim\",\"doi\":\"10.1145/3306214.3338541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an effective method to solve multiple characters audio-driven facial animation (ADFA) problem in an end-to-end fashion via deep neural network. In this paper each character's ADFA considered as a single task, and our goal is to solve ADFA problem in multi-task setting. To this end, we present MulTaNet for multi-task audio-driven facial animation (MTADFA), which learns a cross-task unified feature mapping from audio-to-vertex that capture shared information across multiple related tasks, while try to find within-task prediction network encoding character-dependent topological information. Extensive experiments indicate that MulTaNet generates more natural-looking and stable facial animation, meanwhile shows better generalization capacity to unseen languages compare to previous approaches.\",\"PeriodicalId\":216038,\"journal\":{\"name\":\"ACM SIGGRAPH 2019 Posters\",\"volume\":\"564 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2019 Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3306214.3338541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2019 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3306214.3338541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于深度神经网络的端到端多角色音频驱动面部动画(ADFA)解决方法。本文将每个角色的ADFA视为一个单独的任务,我们的目标是解决多任务环境下的ADFA问题。为此,我们提出了用于多任务音频驱动面部动画(MTADFA)的MulTaNet,它学习从音频到顶点的跨任务统一特征映射,捕获跨多个相关任务的共享信息,同时尝试找到任务内预测网络编码字符依赖的拓扑信息。大量的实验表明,MulTaNet生成的面部动画更自然、更稳定,同时对未知语言的泛化能力也比以往的方法更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-task audio-driven facial animation
We propose an effective method to solve multiple characters audio-driven facial animation (ADFA) problem in an end-to-end fashion via deep neural network. In this paper each character's ADFA considered as a single task, and our goal is to solve ADFA problem in multi-task setting. To this end, we present MulTaNet for multi-task audio-driven facial animation (MTADFA), which learns a cross-task unified feature mapping from audio-to-vertex that capture shared information across multiple related tasks, while try to find within-task prediction network encoding character-dependent topological information. Extensive experiments indicate that MulTaNet generates more natural-looking and stable facial animation, meanwhile shows better generalization capacity to unseen languages compare to previous approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信