基于映射表的低计算复杂度鱼眼图像校正

Y. Ahn, Suk-ju Kang
{"title":"基于映射表的低计算复杂度鱼眼图像校正","authors":"Y. Ahn, Suk-ju Kang","doi":"10.1109/ISOCC.2016.7799760","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a mapping table-based fisheye image correction to reduce computation time. Specifically, the proposed algorithm uses the field of view correction model and camera coordinate conversion when performing an image interpolation for generating an image with the target image size. The experimental results show that the proposed algorithm reduces the computation time up to 15.85% while improving perceptual image quality, compared with the benchmark algorithm.","PeriodicalId":278207,"journal":{"name":"2016 International SoC Design Conference (ISOCC)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mapping table-based fisheye image correction for low computational complexity\",\"authors\":\"Y. Ahn, Suk-ju Kang\",\"doi\":\"10.1109/ISOCC.2016.7799760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we proposed a mapping table-based fisheye image correction to reduce computation time. Specifically, the proposed algorithm uses the field of view correction model and camera coordinate conversion when performing an image interpolation for generating an image with the target image size. The experimental results show that the proposed algorithm reduces the computation time up to 15.85% while improving perceptual image quality, compared with the benchmark algorithm.\",\"PeriodicalId\":278207,\"journal\":{\"name\":\"2016 International SoC Design Conference (ISOCC)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International SoC Design Conference (ISOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISOCC.2016.7799760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC.2016.7799760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了减少计算时间,本文提出了一种基于映射表的鱼眼图像校正方法。具体而言,该算法在进行图像插值时使用视场校正模型和相机坐标转换来生成具有目标图像尺寸的图像。实验结果表明,与基准算法相比,该算法在提高感知图像质量的同时,将计算时间减少了15.85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mapping table-based fisheye image correction for low computational complexity
In this paper, we proposed a mapping table-based fisheye image correction to reduce computation time. Specifically, the proposed algorithm uses the field of view correction model and camera coordinate conversion when performing an image interpolation for generating an image with the target image size. The experimental results show that the proposed algorithm reduces the computation time up to 15.85% while improving perceptual image quality, compared with the benchmark algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信