开放式的问题

Subhadra Dutta, Eric O’Rourke
{"title":"开放式的问题","authors":"Subhadra Dutta, Eric O’Rourke","doi":"10.1093/oso/9780190939717.003.0013","DOIUrl":null,"url":null,"abstract":"Natural language processing (NLP) is the field of decoding human written language. This chapter responds to the growing interest in using machine learning–based NLP approaches for analyzing open-ended employee survey responses. These techniques address scalability and the ability to provide real-time insights to make qualitative data collection equally or more desirable in organizations. The chapter walks through the evolution of text analytics in industrial–organizational psychology and discusses relevant supervised and unsupervised machine learning NLP methods for survey text data, such as latent Dirichlet allocation, latent semantic analysis, sentiment analysis, word relatedness methods, and so on. The chapter also lays out preprocessing techniques and the trade-offs of growing NLP capabilities internally versus externally, points the readers to available resources, and ends with discussing implications and future directions of these approaches.","PeriodicalId":192200,"journal":{"name":"Employee Surveys and Sensing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Open-Ended Questions\",\"authors\":\"Subhadra Dutta, Eric O’Rourke\",\"doi\":\"10.1093/oso/9780190939717.003.0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural language processing (NLP) is the field of decoding human written language. This chapter responds to the growing interest in using machine learning–based NLP approaches for analyzing open-ended employee survey responses. These techniques address scalability and the ability to provide real-time insights to make qualitative data collection equally or more desirable in organizations. The chapter walks through the evolution of text analytics in industrial–organizational psychology and discusses relevant supervised and unsupervised machine learning NLP methods for survey text data, such as latent Dirichlet allocation, latent semantic analysis, sentiment analysis, word relatedness methods, and so on. The chapter also lays out preprocessing techniques and the trade-offs of growing NLP capabilities internally versus externally, points the readers to available resources, and ends with discussing implications and future directions of these approaches.\",\"PeriodicalId\":192200,\"journal\":{\"name\":\"Employee Surveys and Sensing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Employee Surveys and Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780190939717.003.0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Employee Surveys and Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780190939717.003.0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

自然语言处理(NLP)是解码人类书面语言的领域。本章回应了使用基于机器学习的NLP方法来分析开放式员工调查回复的日益增长的兴趣。这些技术解决了可伸缩性和提供实时洞察的能力,使定性数据收集在组织中同样或更可取。本章回顾了工业组织心理学中文本分析的发展,并讨论了调查文本数据的相关监督和无监督机器学习NLP方法,如潜在狄利克雷分配、潜在语义分析、情感分析、词相关性方法等。本章还列出了预处理技术和内部与外部不断增长的NLP能力的权衡,向读者指出了可用的资源,并以讨论这些方法的含义和未来方向结束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Open-Ended Questions
Natural language processing (NLP) is the field of decoding human written language. This chapter responds to the growing interest in using machine learning–based NLP approaches for analyzing open-ended employee survey responses. These techniques address scalability and the ability to provide real-time insights to make qualitative data collection equally or more desirable in organizations. The chapter walks through the evolution of text analytics in industrial–organizational psychology and discusses relevant supervised and unsupervised machine learning NLP methods for survey text data, such as latent Dirichlet allocation, latent semantic analysis, sentiment analysis, word relatedness methods, and so on. The chapter also lays out preprocessing techniques and the trade-offs of growing NLP capabilities internally versus externally, points the readers to available resources, and ends with discussing implications and future directions of these approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信