磁流体动力学方程组修正解的存在性

V. Samokhin
{"title":"磁流体动力学方程组修正解的存在性","authors":"V. Samokhin","doi":"10.1070/SM1992V072N02ABEH001270","DOIUrl":null,"url":null,"abstract":"The time-dependent system of equations describing plane-parallel motion of Ostwald-de Waele media is considered in the approximation of magnetohydrodynamics. The system differs from the classical equations of magnetohydrodynamics by the presence in the leading term of power nonlinearities. The initial boundary value problem is solved with the conditions of diffraction of the physical characteristics on the boundary separating the media. Existence of a generalized solution is proved on the basis of the Faedo-Galerkin method and the method of monotone operators.","PeriodicalId":208776,"journal":{"name":"Mathematics of The Ussr-sbornik","volume":"206 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"EXISTENCE OF A SOLUTION OF A MODIFICATION OF A SYSTEM OF EQUATIONS OF MAGNETOHYDRODYNAMICS\",\"authors\":\"V. Samokhin\",\"doi\":\"10.1070/SM1992V072N02ABEH001270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The time-dependent system of equations describing plane-parallel motion of Ostwald-de Waele media is considered in the approximation of magnetohydrodynamics. The system differs from the classical equations of magnetohydrodynamics by the presence in the leading term of power nonlinearities. The initial boundary value problem is solved with the conditions of diffraction of the physical characteristics on the boundary separating the media. Existence of a generalized solution is proved on the basis of the Faedo-Galerkin method and the method of monotone operators.\",\"PeriodicalId\":208776,\"journal\":{\"name\":\"Mathematics of The Ussr-sbornik\",\"volume\":\"206 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-sbornik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/SM1992V072N02ABEH001270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-sbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/SM1992V072N02ABEH001270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在磁流体力学近似中考虑了描述Ostwald-de - Waele介质平面平行运动的时变方程组。该系统与经典磁流体动力学方程的不同之处在于其前导项存在幂非线性。用介质分离边界上物理特性的衍射条件求解初始边值问题。在Faedo-Galerkin方法和单调算子方法的基础上,证明了一类广义解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EXISTENCE OF A SOLUTION OF A MODIFICATION OF A SYSTEM OF EQUATIONS OF MAGNETOHYDRODYNAMICS
The time-dependent system of equations describing plane-parallel motion of Ostwald-de Waele media is considered in the approximation of magnetohydrodynamics. The system differs from the classical equations of magnetohydrodynamics by the presence in the leading term of power nonlinearities. The initial boundary value problem is solved with the conditions of diffraction of the physical characteristics on the boundary separating the media. Existence of a generalized solution is proved on the basis of the Faedo-Galerkin method and the method of monotone operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信