{"title":"利用单光子雪崩二极管加速电子探测","authors":"A. Bulling, I. Underwood","doi":"10.1109/ICSENS.2018.8589781","DOIUrl":null,"url":null,"abstract":"We present the first reported use of CMOS compatible Single Photon Avalanche Diodes (SPAD) arrays for the detection of accelerated electrons, with the use of 3D-stacked backside illuminated (BSI) SPADs, and a Scanning Electron Microscope (SEM). We detected electrons at electron energies from 5 to 30 keV. This unveils an array of novel application detection opportunities for SPADs in particle radiation environments, taking advantage of their inherent sensitivity and timing capabilities, along with all the usual benefits associated with CMOS devices.","PeriodicalId":405874,"journal":{"name":"2018 IEEE SENSORS","volume":"208 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Accelerated Electron Detection Using Single Photon Avalanche Diodes\",\"authors\":\"A. Bulling, I. Underwood\",\"doi\":\"10.1109/ICSENS.2018.8589781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the first reported use of CMOS compatible Single Photon Avalanche Diodes (SPAD) arrays for the detection of accelerated electrons, with the use of 3D-stacked backside illuminated (BSI) SPADs, and a Scanning Electron Microscope (SEM). We detected electrons at electron energies from 5 to 30 keV. This unveils an array of novel application detection opportunities for SPADs in particle radiation environments, taking advantage of their inherent sensitivity and timing capabilities, along with all the usual benefits associated with CMOS devices.\",\"PeriodicalId\":405874,\"journal\":{\"name\":\"2018 IEEE SENSORS\",\"volume\":\"208 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE SENSORS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2018.8589781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2018.8589781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accelerated Electron Detection Using Single Photon Avalanche Diodes
We present the first reported use of CMOS compatible Single Photon Avalanche Diodes (SPAD) arrays for the detection of accelerated electrons, with the use of 3D-stacked backside illuminated (BSI) SPADs, and a Scanning Electron Microscope (SEM). We detected electrons at electron energies from 5 to 30 keV. This unveils an array of novel application detection opportunities for SPADs in particle radiation environments, taking advantage of their inherent sensitivity and timing capabilities, along with all the usual benefits associated with CMOS devices.