双重生物特征认证方案,保护隐私

K. Sasireka, R. Rajesh
{"title":"双重生物特征认证方案,保护隐私","authors":"K. Sasireka, R. Rajesh","doi":"10.1109/CNT.2014.7062734","DOIUrl":null,"url":null,"abstract":"Preserving the privacy of biometric data becomes a critical work. To increase the privacy of the biometric data, novel method is proposed. In this proposed method, two different biometric data such as features from fingerprint and face are combined. In the face, the features like eyes, lips and brow are extracted. In the fingerprint, orientation feature is extracted. The database contains the training images. The ELM classifier is used to combine these features and matches with the training image.","PeriodicalId":347883,"journal":{"name":"2014 International Conference on Communication and Network Technologies","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dual biometric authentication scheme for privacy protection\",\"authors\":\"K. Sasireka, R. Rajesh\",\"doi\":\"10.1109/CNT.2014.7062734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Preserving the privacy of biometric data becomes a critical work. To increase the privacy of the biometric data, novel method is proposed. In this proposed method, two different biometric data such as features from fingerprint and face are combined. In the face, the features like eyes, lips and brow are extracted. In the fingerprint, orientation feature is extracted. The database contains the training images. The ELM classifier is used to combine these features and matches with the training image.\",\"PeriodicalId\":347883,\"journal\":{\"name\":\"2014 International Conference on Communication and Network Technologies\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Communication and Network Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNT.2014.7062734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Communication and Network Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNT.2014.7062734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

保护生物特征数据的隐私成为一项至关重要的工作。为了提高生物特征数据的保密性,提出了一种新的方法。该方法将两种不同的生物特征数据,如指纹和面部特征相结合。在面部,眼睛、嘴唇和眉毛等特征被提取出来。在指纹中,提取方向特征。数据库中包含训练图像。使用ELM分类器将这些特征与训练图像进行组合和匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual biometric authentication scheme for privacy protection
Preserving the privacy of biometric data becomes a critical work. To increase the privacy of the biometric data, novel method is proposed. In this proposed method, two different biometric data such as features from fingerprint and face are combined. In the face, the features like eyes, lips and brow are extracted. In the fingerprint, orientation feature is extracted. The database contains the training images. The ELM classifier is used to combine these features and matches with the training image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信