基于qft的非对称液压缸电液伺服系统鲁棒位置控制

Hongbo Guo
{"title":"基于qft的非对称液压缸电液伺服系统鲁棒位置控制","authors":"Hongbo Guo","doi":"10.31875/2409-9694.2018.05.1","DOIUrl":null,"url":null,"abstract":"This paper presents the design of a robust controller using the Quantitative Feedback Theory technique for an asymmetric hydraulic cylinder electro-hydraulic servo system based upon a linear, parametrically uncertain model in which some of the uncertainties reflect the variation of the parameters, and taking the external disturbance into account. After the derivation of a realistic nonlinear differential equations model, the linearized plant transfer function model is developed. The effects of parametric uncertainty are accounted for. In this paper, the tracking performance index and disturbance attenuation performance index are transformed into the constraints of the parametrically uncertain sensitivity functions respectively using the sensitivity-based QFT technique. From this point, the QFT design procedure is carried out to design a feasible robust controller that satisfies performance specifications for tracking and disturbance rejection. A nonlinear closed-loop system response is simulated using the designed controller. The results show that the robust stability against system uncertainties is achieved and the robust performances are also satisfied.","PeriodicalId":234563,"journal":{"name":"International Journal of Robotics and Automation Technology","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust QFT-Based Position Control of an Asymmetric Hydraulic Cylinder Electro-hydraulic Servo System\",\"authors\":\"Hongbo Guo\",\"doi\":\"10.31875/2409-9694.2018.05.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design of a robust controller using the Quantitative Feedback Theory technique for an asymmetric hydraulic cylinder electro-hydraulic servo system based upon a linear, parametrically uncertain model in which some of the uncertainties reflect the variation of the parameters, and taking the external disturbance into account. After the derivation of a realistic nonlinear differential equations model, the linearized plant transfer function model is developed. The effects of parametric uncertainty are accounted for. In this paper, the tracking performance index and disturbance attenuation performance index are transformed into the constraints of the parametrically uncertain sensitivity functions respectively using the sensitivity-based QFT technique. From this point, the QFT design procedure is carried out to design a feasible robust controller that satisfies performance specifications for tracking and disturbance rejection. A nonlinear closed-loop system response is simulated using the designed controller. The results show that the robust stability against system uncertainties is achieved and the robust performances are also satisfied.\",\"PeriodicalId\":234563,\"journal\":{\"name\":\"International Journal of Robotics and Automation Technology\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Robotics and Automation Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31875/2409-9694.2018.05.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics and Automation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31875/2409-9694.2018.05.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文针对非对称液压缸电液伺服系统,在考虑外部干扰的情况下,基于线性参数不确定模型,利用定量反馈理论设计了鲁棒控制器。在推导了实际非线性微分方程模型的基础上,建立了线性化的植物传递函数模型。考虑了参数不确定性的影响。利用基于灵敏度的QFT技术,将跟踪性能指标和干扰抑制性能指标分别转化为参数不确定灵敏度函数的约束。从这一点出发,执行QFT设计程序,设计一个可行的鲁棒控制器,满足跟踪和抗扰性能要求。利用所设计的控制器模拟了非线性闭环系统的响应。结果表明,该方法对系统的不确定性具有良好的鲁棒稳定性和鲁棒性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust QFT-Based Position Control of an Asymmetric Hydraulic Cylinder Electro-hydraulic Servo System
This paper presents the design of a robust controller using the Quantitative Feedback Theory technique for an asymmetric hydraulic cylinder electro-hydraulic servo system based upon a linear, parametrically uncertain model in which some of the uncertainties reflect the variation of the parameters, and taking the external disturbance into account. After the derivation of a realistic nonlinear differential equations model, the linearized plant transfer function model is developed. The effects of parametric uncertainty are accounted for. In this paper, the tracking performance index and disturbance attenuation performance index are transformed into the constraints of the parametrically uncertain sensitivity functions respectively using the sensitivity-based QFT technique. From this point, the QFT design procedure is carried out to design a feasible robust controller that satisfies performance specifications for tracking and disturbance rejection. A nonlinear closed-loop system response is simulated using the designed controller. The results show that the robust stability against system uncertainties is achieved and the robust performances are also satisfied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信