从柏拉图到排

C. Quadri, V. Mancuso, Valerio Cislaghi, M. Marsan, G. P. Rossi
{"title":"从柏拉图到排","authors":"C. Quadri, V. Mancuso, Valerio Cislaghi, M. Marsan, G. P. Rossi","doi":"10.1109/MedComNet52149.2021.9501242","DOIUrl":null,"url":null,"abstract":"Grouping vehicles into platoons promises to improve road capacity, driver safety, and fuel consumption. However, when platoons have to allow for cross traffic maneuvers, the ability to control single large platoons is not sufficient, and chaining smaller platoons becomes necessary. To this aim we define PLATO, an edge-assisted multi-platoon control architecture and, by delving into the dichotomy of unity and plurality of platooning, we analyze costs and benefits of multi-platooning. We investigate on the feasibility and formulate the utility of multi-platoons by analyzing the underlying edge computing and broadband cellular connectivity requirements. Using a detailed simulator, we show that, in realistic environments, multi-platoons can be effectively controlled with PLATO, as long as the latency between individual platoon managers and the multi-platoon manager is kept below a few tens of milliseconds. Surprisingly, the latency between vehicles and managers is one order of magnitude less critical.","PeriodicalId":272937,"journal":{"name":"2021 19th Mediterranean Communication and Computer Networking Conference (MedComNet)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"From PLATO to Platoons\",\"authors\":\"C. Quadri, V. Mancuso, Valerio Cislaghi, M. Marsan, G. P. Rossi\",\"doi\":\"10.1109/MedComNet52149.2021.9501242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grouping vehicles into platoons promises to improve road capacity, driver safety, and fuel consumption. However, when platoons have to allow for cross traffic maneuvers, the ability to control single large platoons is not sufficient, and chaining smaller platoons becomes necessary. To this aim we define PLATO, an edge-assisted multi-platoon control architecture and, by delving into the dichotomy of unity and plurality of platooning, we analyze costs and benefits of multi-platooning. We investigate on the feasibility and formulate the utility of multi-platoons by analyzing the underlying edge computing and broadband cellular connectivity requirements. Using a detailed simulator, we show that, in realistic environments, multi-platoons can be effectively controlled with PLATO, as long as the latency between individual platoon managers and the multi-platoon manager is kept below a few tens of milliseconds. Surprisingly, the latency between vehicles and managers is one order of magnitude less critical.\",\"PeriodicalId\":272937,\"journal\":{\"name\":\"2021 19th Mediterranean Communication and Computer Networking Conference (MedComNet)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 19th Mediterranean Communication and Computer Networking Conference (MedComNet)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MedComNet52149.2021.9501242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 19th Mediterranean Communication and Computer Networking Conference (MedComNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MedComNet52149.2021.9501242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

将车辆排成一排有望提高道路容量、驾驶员安全性和燃油消耗。然而,当排必须考虑交叉交通机动时,控制单个大排的能力是不够的,而连接较小的排就变得必要了。为此,我们定义了一种边缘辅助的多排控制体系结构PLATO,并通过深入研究队列的单一性和多元性二分法,分析了多排控制的成本和收益。我们通过分析潜在的边缘计算和宽带蜂窝连接需求,研究了多排的可行性和实用性。通过详细的模拟器,我们表明,在现实环境中,只要单个排管理器和多排管理器之间的延迟保持在几十毫秒以下,PLATO就可以有效地控制多排。令人惊讶的是,车辆和管理人员之间的延迟没有那么重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From PLATO to Platoons
Grouping vehicles into platoons promises to improve road capacity, driver safety, and fuel consumption. However, when platoons have to allow for cross traffic maneuvers, the ability to control single large platoons is not sufficient, and chaining smaller platoons becomes necessary. To this aim we define PLATO, an edge-assisted multi-platoon control architecture and, by delving into the dichotomy of unity and plurality of platooning, we analyze costs and benefits of multi-platooning. We investigate on the feasibility and formulate the utility of multi-platoons by analyzing the underlying edge computing and broadband cellular connectivity requirements. Using a detailed simulator, we show that, in realistic environments, multi-platoons can be effectively controlled with PLATO, as long as the latency between individual platoon managers and the multi-platoon manager is kept below a few tens of milliseconds. Surprisingly, the latency between vehicles and managers is one order of magnitude less critical.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信