{"title":"自组织网络中的局部定位","authors":"D. Niculescu, B. R. Badrinath","doi":"10.1109/SNPA.2003.1203355","DOIUrl":null,"url":null,"abstract":"Position centric approaches, such as Cartesian routing, geographic routing, and the recently proposed trajectory based forwarding (TBF), address scalability issues in large ad hoc networks by using Euclidean space as a complementary name space. These approaches require. that nodes know their position in a common coordinate system. While a GPS receiver in each node would be ideal, in many cases an approximation algorithm is necessary for networks with only a few GPS enabled nodes. These algorithms however require collaboration of large portions of the network, thus imposing an overhead for nodes which do not need positioning, or are mobile. We propose Local Positioning System (LPS), a method that makes use of local node capabilities-angle of arrival, range estimations, compasses and accelerometers, in order to internally position only the groups of nodes involved in particular conversations. Localized positioning enables position centric uses, like discovery, flooding and routing in networks where global positioning is not available.","PeriodicalId":329641,"journal":{"name":"Proceedings of the First IEEE International Workshop on Sensor Network Protocols and Applications, 2003.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"151","resultStr":"{\"title\":\"Localized positioning in ad hoc networks\",\"authors\":\"D. Niculescu, B. R. Badrinath\",\"doi\":\"10.1109/SNPA.2003.1203355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Position centric approaches, such as Cartesian routing, geographic routing, and the recently proposed trajectory based forwarding (TBF), address scalability issues in large ad hoc networks by using Euclidean space as a complementary name space. These approaches require. that nodes know their position in a common coordinate system. While a GPS receiver in each node would be ideal, in many cases an approximation algorithm is necessary for networks with only a few GPS enabled nodes. These algorithms however require collaboration of large portions of the network, thus imposing an overhead for nodes which do not need positioning, or are mobile. We propose Local Positioning System (LPS), a method that makes use of local node capabilities-angle of arrival, range estimations, compasses and accelerometers, in order to internally position only the groups of nodes involved in particular conversations. Localized positioning enables position centric uses, like discovery, flooding and routing in networks where global positioning is not available.\",\"PeriodicalId\":329641,\"journal\":{\"name\":\"Proceedings of the First IEEE International Workshop on Sensor Network Protocols and Applications, 2003.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"151\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First IEEE International Workshop on Sensor Network Protocols and Applications, 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SNPA.2003.1203355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First IEEE International Workshop on Sensor Network Protocols and Applications, 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNPA.2003.1203355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Position centric approaches, such as Cartesian routing, geographic routing, and the recently proposed trajectory based forwarding (TBF), address scalability issues in large ad hoc networks by using Euclidean space as a complementary name space. These approaches require. that nodes know their position in a common coordinate system. While a GPS receiver in each node would be ideal, in many cases an approximation algorithm is necessary for networks with only a few GPS enabled nodes. These algorithms however require collaboration of large portions of the network, thus imposing an overhead for nodes which do not need positioning, or are mobile. We propose Local Positioning System (LPS), a method that makes use of local node capabilities-angle of arrival, range estimations, compasses and accelerometers, in order to internally position only the groups of nodes involved in particular conversations. Localized positioning enables position centric uses, like discovery, flooding and routing in networks where global positioning is not available.