数字仿真中初始化偏差消除方法综述

D. Kimbler, Barry D. Knight
{"title":"数字仿真中初始化偏差消除方法综述","authors":"D. Kimbler, Barry D. Knight","doi":"10.1145/41824.41834","DOIUrl":null,"url":null,"abstract":"Initialization bias in digital simulation typically arises in estimating a steady-state statistic from replicated data. While methods have been developed to avoid this bias, such as batch means, the problem remains in some simulation contexts. This report surveys current methods for dealing with this bias and assesses their effectiveness and usefulness.","PeriodicalId":186490,"journal":{"name":"Annual Simulation Symposium","volume":"143 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A survey of current methods for the elimination of initialization bias in digital simulation\",\"authors\":\"D. Kimbler, Barry D. Knight\",\"doi\":\"10.1145/41824.41834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Initialization bias in digital simulation typically arises in estimating a steady-state statistic from replicated data. While methods have been developed to avoid this bias, such as batch means, the problem remains in some simulation contexts. This report surveys current methods for dealing with this bias and assesses their effectiveness and usefulness.\",\"PeriodicalId\":186490,\"journal\":{\"name\":\"Annual Simulation Symposium\",\"volume\":\"143 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Simulation Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/41824.41834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Simulation Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/41824.41834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

数字仿真中的初始化偏差通常出现在从复制数据估计稳态统计量时。虽然已经开发了一些方法来避免这种偏差,例如批处理方法,但在某些模拟环境中问题仍然存在。本报告调查了目前处理这种偏见的方法,并评估了它们的有效性和有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A survey of current methods for the elimination of initialization bias in digital simulation
Initialization bias in digital simulation typically arises in estimating a steady-state statistic from replicated data. While methods have been developed to avoid this bias, such as batch means, the problem remains in some simulation contexts. This report surveys current methods for dealing with this bias and assesses their effectiveness and usefulness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信