弱标定运动模型下移动机器人的精确定位

P. Jeong, Dan Pojar, S. Nedevschi
{"title":"弱标定运动模型下移动机器人的精确定位","authors":"P. Jeong, Dan Pojar, S. Nedevschi","doi":"10.1109/ICCP.2012.6356177","DOIUrl":null,"url":null,"abstract":"This paper proposes an accurate localization method, which consists of a non-probabilistic motion model and Generalized Iterative Closet Point (GICP). The most encountered problem of using motion models is to determine empirical parameters, which represent the systemic errors and the non-systemic errors. The perfect representation of those errors is an extremely difficult task, and it is practically impossible. Therefore, in order to compensate those errors, generally a probabilistic approach is used in the grid map. However, this generic approach shows a drifting problem due to systemic/non-systemic errors of the motion model and discrepancy of the grid map. To avoid those problems, we use GICP framework instead of using the grid map. In addition, this GICP helps to obtain accurate localization results even though we calibrate motion model parameters roughly.","PeriodicalId":406461,"journal":{"name":"2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing","volume":"1048 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate localization of mobile robot under the weakly callibrated motion model\",\"authors\":\"P. Jeong, Dan Pojar, S. Nedevschi\",\"doi\":\"10.1109/ICCP.2012.6356177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an accurate localization method, which consists of a non-probabilistic motion model and Generalized Iterative Closet Point (GICP). The most encountered problem of using motion models is to determine empirical parameters, which represent the systemic errors and the non-systemic errors. The perfect representation of those errors is an extremely difficult task, and it is practically impossible. Therefore, in order to compensate those errors, generally a probabilistic approach is used in the grid map. However, this generic approach shows a drifting problem due to systemic/non-systemic errors of the motion model and discrepancy of the grid map. To avoid those problems, we use GICP framework instead of using the grid map. In addition, this GICP helps to obtain accurate localization results even though we calibrate motion model parameters roughly.\",\"PeriodicalId\":406461,\"journal\":{\"name\":\"2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing\",\"volume\":\"1048 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCP.2012.6356177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2012.6356177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种由非概率运动模型和广义迭代封闭点(GICP)组成的精确定位方法。使用运动模型最常遇到的问题是确定代表系统误差和非系统误差的经验参数。完美地表示这些错误是一项极其困难的任务,实际上是不可能的。因此,为了补偿这些误差,通常在网格图中使用概率方法。然而,由于运动模型的系统/非系统误差和网格图的差异,这种通用方法存在漂移问题。为了避免这些问题,我们使用GICP框架而不是网格图。此外,即使我们粗略地校准运动模型参数,该GICP也有助于获得准确的定位结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate localization of mobile robot under the weakly callibrated motion model
This paper proposes an accurate localization method, which consists of a non-probabilistic motion model and Generalized Iterative Closet Point (GICP). The most encountered problem of using motion models is to determine empirical parameters, which represent the systemic errors and the non-systemic errors. The perfect representation of those errors is an extremely difficult task, and it is practically impossible. Therefore, in order to compensate those errors, generally a probabilistic approach is used in the grid map. However, this generic approach shows a drifting problem due to systemic/non-systemic errors of the motion model and discrepancy of the grid map. To avoid those problems, we use GICP framework instead of using the grid map. In addition, this GICP helps to obtain accurate localization results even though we calibrate motion model parameters roughly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信