基于Visual SLAM的独立定位系统

S. Zotov
{"title":"基于Visual SLAM的独立定位系统","authors":"S. Zotov","doi":"10.1109/PLANS46316.2020.9109974","DOIUrl":null,"url":null,"abstract":"This work presents a compact stand-alone orientation system based on the visual SLAM (Simultaneous Localization and Mapping). Unlike other modern approaches our SLAM algorithm was developed using error models of rate sensors and line-of-sight measurement of unique features extracted from the video stream, delivered by the monocular camera. Our approach allows seamless (tight) integration of inertial measurement units (IMU) and exogenous measurements, provided by the wide array of range and angular sensors such as radars, LIDARs, etc. The developed algorithm is implemented in an NVIDIA Jetson Nano computer (at just 100×80 mm) including a dedicated cooling system. The total weight of the system is 240 grams and power usage is 5 Watt.","PeriodicalId":273568,"journal":{"name":"2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stand-Alone Orientation System Based on Visual SLAM\",\"authors\":\"S. Zotov\",\"doi\":\"10.1109/PLANS46316.2020.9109974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a compact stand-alone orientation system based on the visual SLAM (Simultaneous Localization and Mapping). Unlike other modern approaches our SLAM algorithm was developed using error models of rate sensors and line-of-sight measurement of unique features extracted from the video stream, delivered by the monocular camera. Our approach allows seamless (tight) integration of inertial measurement units (IMU) and exogenous measurements, provided by the wide array of range and angular sensors such as radars, LIDARs, etc. The developed algorithm is implemented in an NVIDIA Jetson Nano computer (at just 100×80 mm) including a dedicated cooling system. The total weight of the system is 240 grams and power usage is 5 Watt.\",\"PeriodicalId\":273568,\"journal\":{\"name\":\"2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)\",\"volume\":\"141 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS46316.2020.9109974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS46316.2020.9109974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于视觉SLAM (Simultaneous Localization and Mapping)的小型独立定位系统。与其他现代方法不同,我们的SLAM算法是使用速率传感器的误差模型和从单目摄像机提供的视频流中提取的独特特征的视距测量来开发的。我们的方法允许惯性测量单元(IMU)和外源测量的无缝(紧密)集成,由广泛的范围和角度传感器(如雷达,激光雷达等)提供。开发的算法在NVIDIA Jetson Nano计算机(仅100×80毫米)中实现,包括专用冷却系统。系统总重量为240克,功耗为5瓦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stand-Alone Orientation System Based on Visual SLAM
This work presents a compact stand-alone orientation system based on the visual SLAM (Simultaneous Localization and Mapping). Unlike other modern approaches our SLAM algorithm was developed using error models of rate sensors and line-of-sight measurement of unique features extracted from the video stream, delivered by the monocular camera. Our approach allows seamless (tight) integration of inertial measurement units (IMU) and exogenous measurements, provided by the wide array of range and angular sensors such as radars, LIDARs, etc. The developed algorithm is implemented in an NVIDIA Jetson Nano computer (at just 100×80 mm) including a dedicated cooling system. The total weight of the system is 240 grams and power usage is 5 Watt.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信