一种基于自适应采样的并行体绘制算法

Huawei Wang, Li Xiao, Yi Cao
{"title":"一种基于自适应采样的并行体绘制算法","authors":"Huawei Wang, Li Xiao, Yi Cao","doi":"10.1109/ICVRV.2011.61","DOIUrl":null,"url":null,"abstract":"In this paper, a parallel ray-casting volume rendering algorithm based on adaptive sampling is presented for visualizing TB-scale time-varying scientific data. The algorithm samples a data field adaptively according to its inner variation, and thus sets sampling points only in important positions. In order to integrate adaptive sampling into the parallel rendering framework, an efficient method is proposed to handle the resulting unstructured sampling data. The experiments demonstrate that the proposed algorithm can be used to effectively render inner data features in high quality.","PeriodicalId":239933,"journal":{"name":"2011 International Conference on Virtual Reality and Visualization","volume":"426 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Adaptive Sampling Based Parallel Volume Rendering Algorithm\",\"authors\":\"Huawei Wang, Li Xiao, Yi Cao\",\"doi\":\"10.1109/ICVRV.2011.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a parallel ray-casting volume rendering algorithm based on adaptive sampling is presented for visualizing TB-scale time-varying scientific data. The algorithm samples a data field adaptively according to its inner variation, and thus sets sampling points only in important positions. In order to integrate adaptive sampling into the parallel rendering framework, an efficient method is proposed to handle the resulting unstructured sampling data. The experiments demonstrate that the proposed algorithm can be used to effectively render inner data features in high quality.\",\"PeriodicalId\":239933,\"journal\":{\"name\":\"2011 International Conference on Virtual Reality and Visualization\",\"volume\":\"426 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Virtual Reality and Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVRV.2011.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Virtual Reality and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRV.2011.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于自适应采样的并行光线投射体绘制算法,用于tb尺度时变科学数据的可视化。该算法根据数据域的内部变化自适应采样,只在重要位置设置采样点。为了将自适应采样整合到并行渲染框架中,提出了一种有效的方法来处理由此产生的非结构化采样数据。实验结果表明,该算法能够有效、高质量地呈现数据内部特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Adaptive Sampling Based Parallel Volume Rendering Algorithm
In this paper, a parallel ray-casting volume rendering algorithm based on adaptive sampling is presented for visualizing TB-scale time-varying scientific data. The algorithm samples a data field adaptively according to its inner variation, and thus sets sampling points only in important positions. In order to integrate adaptive sampling into the parallel rendering framework, an efficient method is proposed to handle the resulting unstructured sampling data. The experiments demonstrate that the proposed algorithm can be used to effectively render inner data features in high quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信