{"title":"基于谱舍入的图分割:在图像分割和聚类中的应用","authors":"David Tolliver, G. Miller","doi":"10.1109/CVPR.2006.129","DOIUrl":null,"url":null,"abstract":"We introduce a family of spectral partitioning methods. Edge separators of a graph are produced by iteratively reweighting the edges until the graph disconnects into the prescribed number of components. At each iteration a small number of eigenvectors with small eigenvalue are computed and used to determine the reweighting. In this way spectral rounding directly produces discrete solutions where as current spectral algorithms must map the continuous eigenvectors to discrete solutions by employing a heuristic geometric separator (e.g. k-means). We show that spectral rounding compares favorably to current spectral approximations on the Normalized Cut criterion (NCut). Results are given for natural image segmentation, medical image segmentation, and clustering. A practical version is shown to converge.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"109","resultStr":"{\"title\":\"Graph Partitioning by Spectral Rounding: Applications in Image Segmentation and Clustering\",\"authors\":\"David Tolliver, G. Miller\",\"doi\":\"10.1109/CVPR.2006.129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a family of spectral partitioning methods. Edge separators of a graph are produced by iteratively reweighting the edges until the graph disconnects into the prescribed number of components. At each iteration a small number of eigenvectors with small eigenvalue are computed and used to determine the reweighting. In this way spectral rounding directly produces discrete solutions where as current spectral algorithms must map the continuous eigenvectors to discrete solutions by employing a heuristic geometric separator (e.g. k-means). We show that spectral rounding compares favorably to current spectral approximations on the Normalized Cut criterion (NCut). Results are given for natural image segmentation, medical image segmentation, and clustering. A practical version is shown to converge.\",\"PeriodicalId\":421737,\"journal\":{\"name\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"109\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2006.129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Graph Partitioning by Spectral Rounding: Applications in Image Segmentation and Clustering
We introduce a family of spectral partitioning methods. Edge separators of a graph are produced by iteratively reweighting the edges until the graph disconnects into the prescribed number of components. At each iteration a small number of eigenvectors with small eigenvalue are computed and used to determine the reweighting. In this way spectral rounding directly produces discrete solutions where as current spectral algorithms must map the continuous eigenvectors to discrete solutions by employing a heuristic geometric separator (e.g. k-means). We show that spectral rounding compares favorably to current spectral approximations on the Normalized Cut criterion (NCut). Results are given for natural image segmentation, medical image segmentation, and clustering. A practical version is shown to converge.