一种太阳能光伏发电和太阳辐照数据联合清洗方法

J. Pessanha, A. Melo, R. Caldas, D. Falcão
{"title":"一种太阳能光伏发电和太阳辐照数据联合清洗方法","authors":"J. Pessanha, A. Melo, R. Caldas, D. Falcão","doi":"10.1109/PMAPS47429.2020.9183488","DOIUrl":null,"url":null,"abstract":"A good solar power photovoltaic generation forecast depends on good quality time series data from measurements of global horizontal irradiation and solar generation. However, measurement system failures and errors in data handling can corrupt data records with gaps and outliers that undermine forecasting accuracy. Therefore, it is important that the fitting of solar energy prediction models must be preceded by a data analysis in order to detect and correct measurement errors. This paper presents the main features of an approach for the joint data cleaning of solar photovoltaic generation and solar irradiation. The methodology comprises 5 chained steps and consists in the combined treatment of global horizontal irradiation and solar photovoltaic generation data using statistical techniques, data mining algorithms and reanalysis data with the purpose of correcting outliers, replacing incorrect values and filling data gaps. The application of the proposed approach is illustrated with a real system presenting good performance.","PeriodicalId":126918,"journal":{"name":"2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Methodology for Joint Data Cleaning of Solar Photovoltaic Generation and Solar Irradiation\",\"authors\":\"J. Pessanha, A. Melo, R. Caldas, D. Falcão\",\"doi\":\"10.1109/PMAPS47429.2020.9183488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A good solar power photovoltaic generation forecast depends on good quality time series data from measurements of global horizontal irradiation and solar generation. However, measurement system failures and errors in data handling can corrupt data records with gaps and outliers that undermine forecasting accuracy. Therefore, it is important that the fitting of solar energy prediction models must be preceded by a data analysis in order to detect and correct measurement errors. This paper presents the main features of an approach for the joint data cleaning of solar photovoltaic generation and solar irradiation. The methodology comprises 5 chained steps and consists in the combined treatment of global horizontal irradiation and solar photovoltaic generation data using statistical techniques, data mining algorithms and reanalysis data with the purpose of correcting outliers, replacing incorrect values and filling data gaps. The application of the proposed approach is illustrated with a real system presenting good performance.\",\"PeriodicalId\":126918,\"journal\":{\"name\":\"2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PMAPS47429.2020.9183488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMAPS47429.2020.9183488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

良好的太阳能光伏发电预测依赖于来自全球水平辐射和太阳能发电测量的高质量时间序列数据。然而,测量系统的故障和数据处理中的错误可能会破坏数据记录,造成差距和异常值,从而破坏预测的准确性。因此,在拟合太阳能预测模型之前必须进行数据分析,以便发现和纠正测量误差,这一点很重要。本文介绍了一种太阳能光伏发电和太阳辐照数据联合清洗方法的主要特点。该方法包括5个链式步骤,包括使用统计技术、数据挖掘算法和再分析数据对全球水平辐射和太阳能光伏发电数据进行联合处理,以纠正异常值、替换不正确值和填补数据空白。通过一个实际系统说明了该方法的应用,取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Methodology for Joint Data Cleaning of Solar Photovoltaic Generation and Solar Irradiation
A good solar power photovoltaic generation forecast depends on good quality time series data from measurements of global horizontal irradiation and solar generation. However, measurement system failures and errors in data handling can corrupt data records with gaps and outliers that undermine forecasting accuracy. Therefore, it is important that the fitting of solar energy prediction models must be preceded by a data analysis in order to detect and correct measurement errors. This paper presents the main features of an approach for the joint data cleaning of solar photovoltaic generation and solar irradiation. The methodology comprises 5 chained steps and consists in the combined treatment of global horizontal irradiation and solar photovoltaic generation data using statistical techniques, data mining algorithms and reanalysis data with the purpose of correcting outliers, replacing incorrect values and filling data gaps. The application of the proposed approach is illustrated with a real system presenting good performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信