基于tile的哨兵图像LULC分类方法的深度学习技术

M. Pallavi, T. Thivakaran, Chandankeri Ganapathi
{"title":"基于tile的哨兵图像LULC分类方法的深度学习技术","authors":"M. Pallavi, T. Thivakaran, Chandankeri Ganapathi","doi":"10.1109/ICONAT53423.2022.9726030","DOIUrl":null,"url":null,"abstract":"In this paper, we present a tile-based approach for the classification of sentinel images. Google Earth Engine provides open and free access to the sentinel level-2 and other satellite images. The study area of this research includes Bangalore (BBMP limits) of Karnataka state, India. We have created novel dataset by tiling sentinel image and obtained at least 1000 training samples for each of the five classes namely Forest, Open land, Water, Urban and Vegetation. Deep learning models such as VGG16, DenseNet and ResNet50 are used. Out of these three Resnet50 outperformed with classification accuracy of 98.47 on test data. All the image patches used here are of a spatial resolution of 8m. They are geo-referenced and manually labeled. This aids for exploring different applications of spatial data analytics.","PeriodicalId":377501,"journal":{"name":"2022 International Conference for Advancement in Technology (ICONAT)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Tile-Based Approach for the LULC Classification of Sentinel Image Using Deep Learning Techniques\",\"authors\":\"M. Pallavi, T. Thivakaran, Chandankeri Ganapathi\",\"doi\":\"10.1109/ICONAT53423.2022.9726030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a tile-based approach for the classification of sentinel images. Google Earth Engine provides open and free access to the sentinel level-2 and other satellite images. The study area of this research includes Bangalore (BBMP limits) of Karnataka state, India. We have created novel dataset by tiling sentinel image and obtained at least 1000 training samples for each of the five classes namely Forest, Open land, Water, Urban and Vegetation. Deep learning models such as VGG16, DenseNet and ResNet50 are used. Out of these three Resnet50 outperformed with classification accuracy of 98.47 on test data. All the image patches used here are of a spatial resolution of 8m. They are geo-referenced and manually labeled. This aids for exploring different applications of spatial data analytics.\",\"PeriodicalId\":377501,\"journal\":{\"name\":\"2022 International Conference for Advancement in Technology (ICONAT)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference for Advancement in Technology (ICONAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONAT53423.2022.9726030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference for Advancement in Technology (ICONAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONAT53423.2022.9726030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一种基于瓷砖的哨兵图像分类方法。谷歌地球引擎提供开放和免费访问哨兵2级和其他卫星图像。本研究的研究区域包括印度卡纳塔克邦的班加罗尔(BBMP限制)。我们通过平铺哨兵图像创建了新的数据集,并为森林、开阔地、水、城市和植被这五个类别分别获得了至少1000个训练样本。使用VGG16、DenseNet、ResNet50等深度学习模型。在这三个中,Resnet50在测试数据上的分类准确率为98.47。这里使用的所有图像块的空间分辨率都是8m。它们是地理参考和手动标记的。这有助于探索空间数据分析的不同应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Tile-Based Approach for the LULC Classification of Sentinel Image Using Deep Learning Techniques
In this paper, we present a tile-based approach for the classification of sentinel images. Google Earth Engine provides open and free access to the sentinel level-2 and other satellite images. The study area of this research includes Bangalore (BBMP limits) of Karnataka state, India. We have created novel dataset by tiling sentinel image and obtained at least 1000 training samples for each of the five classes namely Forest, Open land, Water, Urban and Vegetation. Deep learning models such as VGG16, DenseNet and ResNet50 are used. Out of these three Resnet50 outperformed with classification accuracy of 98.47 on test data. All the image patches used here are of a spatial resolution of 8m. They are geo-referenced and manually labeled. This aids for exploring different applications of spatial data analytics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信