浮点数压缩的多阶段方法

Kevin Townsend, Joseph Zambreno
{"title":"浮点数压缩的多阶段方法","authors":"Kevin Townsend, Joseph Zambreno","doi":"10.1109/EIT.2015.7293348","DOIUrl":null,"url":null,"abstract":"This paper presents a lossless double-precision floating point compression algorithm. Floating point compression can reduce the cost of storing and transmitting large amounts of data associated with big data problems. A previous algorithm called FPC performs well and uses predictors. However, predictors have limitations. Our program (fzip) overcomes some of these limitations, fzip has 2 phases, first BWT compression, second value and prefix compression with variable length arithmetic encoding. This approach has the advantage that the phases work together and each phase compresses a different type of pattern. On average, fzip achieves a 20% higher compression ratio than other algorithms.","PeriodicalId":415614,"journal":{"name":"2015 IEEE International Conference on Electro/Information Technology (EIT)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A multi-phase approach to floating-point compression\",\"authors\":\"Kevin Townsend, Joseph Zambreno\",\"doi\":\"10.1109/EIT.2015.7293348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a lossless double-precision floating point compression algorithm. Floating point compression can reduce the cost of storing and transmitting large amounts of data associated with big data problems. A previous algorithm called FPC performs well and uses predictors. However, predictors have limitations. Our program (fzip) overcomes some of these limitations, fzip has 2 phases, first BWT compression, second value and prefix compression with variable length arithmetic encoding. This approach has the advantage that the phases work together and each phase compresses a different type of pattern. On average, fzip achieves a 20% higher compression ratio than other algorithms.\",\"PeriodicalId\":415614,\"journal\":{\"name\":\"2015 IEEE International Conference on Electro/Information Technology (EIT)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Electro/Information Technology (EIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIT.2015.7293348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Electro/Information Technology (EIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2015.7293348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种无损双精度浮点数压缩算法。浮点压缩可以降低存储和传输与大数据问题相关的大量数据的成本。之前一种叫做FPC的算法使用了预测器,表现很好。然而,预测器有其局限性。我们的程序(fzip)克服了这些限制,fzip有两个阶段,第一个BWT压缩,第二个值和前缀压缩与可变长度算术编码。这种方法的优点是各个阶段一起工作,每个阶段压缩不同类型的模式。平均而言,fzip的压缩比比其他算法高20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-phase approach to floating-point compression
This paper presents a lossless double-precision floating point compression algorithm. Floating point compression can reduce the cost of storing and transmitting large amounts of data associated with big data problems. A previous algorithm called FPC performs well and uses predictors. However, predictors have limitations. Our program (fzip) overcomes some of these limitations, fzip has 2 phases, first BWT compression, second value and prefix compression with variable length arithmetic encoding. This approach has the advantage that the phases work together and each phase compresses a different type of pattern. On average, fzip achieves a 20% higher compression ratio than other algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信