用于制造光伏太阳能电池的印刷工艺

Tina E. Rardin, R. Xu
{"title":"用于制造光伏太阳能电池的印刷工艺","authors":"Tina E. Rardin, R. Xu","doi":"10.21061/jots.v37i2.a.1","DOIUrl":null,"url":null,"abstract":"There is a growing need for renewable energy sources, and solar power is a good option in many instances. Photovoltaic solar panels are now being manufactured via various methods, and different printing processes are being incorporated into the manufacturing process. Screen printing has been used most prevalently in the printing process to make solar cells, but some companies have used the offset web press type methods to put material onto foil; they also have created solar cells with inkjet printing. The printing of solar cells has helped to reduce manufacturing costs in most cases, and it also has increased the various applications in which solar power both is and can be used. Many more options for photovoltaic solar panels are available, and not simply the traditional ones that are often placed on rooftops. Such a variety of solar panels are partially to the result of the implementation of suitable printing processes during the production of these cells. Introduction With ever-increasing political and economic oil conflicts as well as climate change, a growing need for renewable energy that comes from natural resources, such as sunlight, wind, rain, tides, and geothermal heat, is warranted. Wars have been caused in part to protect oil supplies, and millions of tons of pollutants and greenhouse gases are emitted into the atmosphere every year due to the burning of fossil fuels to create energy. There is no other area of technology than renewable energy technologies that can both “meet the challenges of climate change and secure an energy supply in an intelligent manner” (Wengenmayr & Bührke, 2008, p. 1). A number of options for new technologies of renewable energy exist, that is, from geothermal to wind to hydrogen fuel cells to hydropower; however, one of the most accessible and widely used technologies is solar energy. Solar power does not create any noise when it is working, “is non-polluting, does not generate greenhouse gases, and creates no waste products,” (Brenner, 2010, p. 27), which is also why it is an increasingly preferred renewable energy. Additionally, the potential for solar power is immense. The energy from the sunlight that strikes the earth for only forty minutes is equal to the global energy consumption for an entire year (Zweibel, Mason, & Vasilis, 2008). All of that energy is of no use, unless it can be captured. A good method to harness this immense amount of energy and thus to eventually use it as electricity is through the use of photovoltaic (PV) energy systems.","PeriodicalId":142452,"journal":{"name":"The Journal of Technology Studies","volume":"559 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Printing Processes Used to Manufacture Photovoltaic Solar Cells\",\"authors\":\"Tina E. Rardin, R. Xu\",\"doi\":\"10.21061/jots.v37i2.a.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a growing need for renewable energy sources, and solar power is a good option in many instances. Photovoltaic solar panels are now being manufactured via various methods, and different printing processes are being incorporated into the manufacturing process. Screen printing has been used most prevalently in the printing process to make solar cells, but some companies have used the offset web press type methods to put material onto foil; they also have created solar cells with inkjet printing. The printing of solar cells has helped to reduce manufacturing costs in most cases, and it also has increased the various applications in which solar power both is and can be used. Many more options for photovoltaic solar panels are available, and not simply the traditional ones that are often placed on rooftops. Such a variety of solar panels are partially to the result of the implementation of suitable printing processes during the production of these cells. Introduction With ever-increasing political and economic oil conflicts as well as climate change, a growing need for renewable energy that comes from natural resources, such as sunlight, wind, rain, tides, and geothermal heat, is warranted. Wars have been caused in part to protect oil supplies, and millions of tons of pollutants and greenhouse gases are emitted into the atmosphere every year due to the burning of fossil fuels to create energy. There is no other area of technology than renewable energy technologies that can both “meet the challenges of climate change and secure an energy supply in an intelligent manner” (Wengenmayr & Bührke, 2008, p. 1). A number of options for new technologies of renewable energy exist, that is, from geothermal to wind to hydrogen fuel cells to hydropower; however, one of the most accessible and widely used technologies is solar energy. Solar power does not create any noise when it is working, “is non-polluting, does not generate greenhouse gases, and creates no waste products,” (Brenner, 2010, p. 27), which is also why it is an increasingly preferred renewable energy. Additionally, the potential for solar power is immense. The energy from the sunlight that strikes the earth for only forty minutes is equal to the global energy consumption for an entire year (Zweibel, Mason, & Vasilis, 2008). All of that energy is of no use, unless it can be captured. A good method to harness this immense amount of energy and thus to eventually use it as electricity is through the use of photovoltaic (PV) energy systems.\",\"PeriodicalId\":142452,\"journal\":{\"name\":\"The Journal of Technology Studies\",\"volume\":\"559 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Technology Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21061/jots.v37i2.a.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Technology Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21061/jots.v37i2.a.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

对可再生能源的需求日益增长,在许多情况下,太阳能是一个很好的选择。光伏太阳能电池板现在正通过各种方法制造,不同的印刷工艺正在被纳入制造过程。丝网印刷在制造太阳能电池的印刷过程中最普遍使用,但有些公司使用胶版卷筒印刷机类型方法将材料放在箔上;他们还发明了喷墨打印的太阳能电池。在大多数情况下,太阳能电池的印刷有助于降低制造成本,它也增加了太阳能的各种应用。光伏太阳能电池板有更多的选择,而不仅仅是传统的通常放置在屋顶上的太阳能电池板。如此多样的太阳能电池板部分是由于在这些电池的生产过程中实施了适当的印刷工艺。随着不断增加的政治和经济石油冲突以及气候变化,对来自自然资源的可再生能源的需求日益增长,如阳光、风、雨、潮汐和地热,是有保证的。战争在一定程度上是为了保护石油供应,由于燃烧化石燃料产生能源,每年有数百万吨污染物和温室气体排放到大气中。除了可再生能源技术之外,没有其他技术领域可以“应对气候变化的挑战,并以智能的方式确保能源供应”(Wengenmayr & b hrke, 2008年,第1页)。可再生能源的新技术有许多选择,即从地热到风能到氢燃料电池到水力发电;然而,最容易获得和广泛使用的技术之一是太阳能。太阳能发电在工作时不会产生任何噪音,“无污染,不产生温室气体,也不会产生废物,”(Brenner, 2010, p. 27),这也是为什么它越来越受欢迎的可再生能源。此外,太阳能的潜力是巨大的。太阳光照射地球仅40分钟的能量就相当于全球一整年的能源消耗(Zweibel, Mason, & Vasilis, 2008)。所有这些能量都是无用的,除非它们能被捕获。利用这种巨大的能量并最终将其作为电力使用的一个好方法是使用光伏(PV)能源系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Printing Processes Used to Manufacture Photovoltaic Solar Cells
There is a growing need for renewable energy sources, and solar power is a good option in many instances. Photovoltaic solar panels are now being manufactured via various methods, and different printing processes are being incorporated into the manufacturing process. Screen printing has been used most prevalently in the printing process to make solar cells, but some companies have used the offset web press type methods to put material onto foil; they also have created solar cells with inkjet printing. The printing of solar cells has helped to reduce manufacturing costs in most cases, and it also has increased the various applications in which solar power both is and can be used. Many more options for photovoltaic solar panels are available, and not simply the traditional ones that are often placed on rooftops. Such a variety of solar panels are partially to the result of the implementation of suitable printing processes during the production of these cells. Introduction With ever-increasing political and economic oil conflicts as well as climate change, a growing need for renewable energy that comes from natural resources, such as sunlight, wind, rain, tides, and geothermal heat, is warranted. Wars have been caused in part to protect oil supplies, and millions of tons of pollutants and greenhouse gases are emitted into the atmosphere every year due to the burning of fossil fuels to create energy. There is no other area of technology than renewable energy technologies that can both “meet the challenges of climate change and secure an energy supply in an intelligent manner” (Wengenmayr & Bührke, 2008, p. 1). A number of options for new technologies of renewable energy exist, that is, from geothermal to wind to hydrogen fuel cells to hydropower; however, one of the most accessible and widely used technologies is solar energy. Solar power does not create any noise when it is working, “is non-polluting, does not generate greenhouse gases, and creates no waste products,” (Brenner, 2010, p. 27), which is also why it is an increasingly preferred renewable energy. Additionally, the potential for solar power is immense. The energy from the sunlight that strikes the earth for only forty minutes is equal to the global energy consumption for an entire year (Zweibel, Mason, & Vasilis, 2008). All of that energy is of no use, unless it can be captured. A good method to harness this immense amount of energy and thus to eventually use it as electricity is through the use of photovoltaic (PV) energy systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信