具有所有不稳定子系统的切换LPV系统的稳定切换律

Xu He, G. Dymirkovsky
{"title":"具有所有不稳定子系统的切换LPV系统的稳定切换律","authors":"Xu He, G. Dymirkovsky","doi":"10.1109/ICSSE.2013.6614694","DOIUrl":null,"url":null,"abstract":"This investigation presents a synthesis solution for stabilizing switching laws a class of parameter-varying plants represented via linear LPV systems that has all unstable subsystems. Considered class of LPV systems has state matrices as parametrically affine with parameter varying in a convex set for which all the subsystems are unstable. Stabilization design of switching laws is solved that enforce overall state trajectory that is asymptotically convergent to the equilibrium state. Via the parameter-dependent multiple Lyapunov function approach, a set of linear matrix inequalities guaranteeing the existence of parameter-dependent Lyapunov functions is derived. An illustrative example and the respective simulation results are given that demonstrate the effectiveness of this new synthesis design for this class of LPV systems.","PeriodicalId":124317,"journal":{"name":"2013 International Conference on System Science and Engineering (ICSSE)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Stabilizing switching laws for switched LPV systems with all unstable subsystems\",\"authors\":\"Xu He, G. Dymirkovsky\",\"doi\":\"10.1109/ICSSE.2013.6614694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This investigation presents a synthesis solution for stabilizing switching laws a class of parameter-varying plants represented via linear LPV systems that has all unstable subsystems. Considered class of LPV systems has state matrices as parametrically affine with parameter varying in a convex set for which all the subsystems are unstable. Stabilization design of switching laws is solved that enforce overall state trajectory that is asymptotically convergent to the equilibrium state. Via the parameter-dependent multiple Lyapunov function approach, a set of linear matrix inequalities guaranteeing the existence of parameter-dependent Lyapunov functions is derived. An illustrative example and the respective simulation results are given that demonstrate the effectiveness of this new synthesis design for this class of LPV systems.\",\"PeriodicalId\":124317,\"journal\":{\"name\":\"2013 International Conference on System Science and Engineering (ICSSE)\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on System Science and Engineering (ICSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSE.2013.6614694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE.2013.6614694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了一类由线性LPV系统表示的具有所有不稳定子系统的变参数对象的稳定切换律的综合解。所考虑的一类LPV系统的状态矩阵是参数仿射的,在凸集中所有子系统都是不稳定的。解决了使整体状态轨迹渐近收敛于平衡状态的切换律的镇定设计问题。通过参数相关的多重Lyapunov函数方法,导出了一组保证参数相关Lyapunov函数存在的线性矩阵不等式。给出了一个实例和相应的仿真结果,证明了这种新的综合设计对这类LPV系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stabilizing switching laws for switched LPV systems with all unstable subsystems
This investigation presents a synthesis solution for stabilizing switching laws a class of parameter-varying plants represented via linear LPV systems that has all unstable subsystems. Considered class of LPV systems has state matrices as parametrically affine with parameter varying in a convex set for which all the subsystems are unstable. Stabilization design of switching laws is solved that enforce overall state trajectory that is asymptotically convergent to the equilibrium state. Via the parameter-dependent multiple Lyapunov function approach, a set of linear matrix inequalities guaranteeing the existence of parameter-dependent Lyapunov functions is derived. An illustrative example and the respective simulation results are given that demonstrate the effectiveness of this new synthesis design for this class of LPV systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信