机器学习中判别感知模型的基准测试框架

Rodrigo L. Cardoso, Wagner Meira, Jr, Virgílio A. F. Almeida, Mohammed J. Zaki
{"title":"机器学习中判别感知模型的基准测试框架","authors":"Rodrigo L. Cardoso, Wagner Meira, Jr, Virgílio A. F. Almeida, Mohammed J. Zaki","doi":"10.1145/3306618.3314262","DOIUrl":null,"url":null,"abstract":"Discrimination-aware models in machine learning are a recent topic of study that aim to minimize the adverse impact of machine learning decisions for certain groups of people due to ethical and legal implications. We propose a benchmark framework for assessing discrimination-aware models. Our framework consists of systematically generated biased datasets that are similar to real world data, created by a Bayesian network approach. Experimental results show that we can assess the quality of techniques through known metrics of discrimination, and our flexible framework can be extended to most real datasets and fairness measures to support a diversity of assessments.","PeriodicalId":418125,"journal":{"name":"Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A Framework for Benchmarking Discrimination-Aware Models in Machine Learning\",\"authors\":\"Rodrigo L. Cardoso, Wagner Meira, Jr, Virgílio A. F. Almeida, Mohammed J. Zaki\",\"doi\":\"10.1145/3306618.3314262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discrimination-aware models in machine learning are a recent topic of study that aim to minimize the adverse impact of machine learning decisions for certain groups of people due to ethical and legal implications. We propose a benchmark framework for assessing discrimination-aware models. Our framework consists of systematically generated biased datasets that are similar to real world data, created by a Bayesian network approach. Experimental results show that we can assess the quality of techniques through known metrics of discrimination, and our flexible framework can be extended to most real datasets and fairness measures to support a diversity of assessments.\",\"PeriodicalId\":418125,\"journal\":{\"name\":\"Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3306618.3314262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3306618.3314262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

机器学习中的歧视感知模型是最近的一个研究主题,旨在最大限度地减少由于伦理和法律影响而导致的机器学习决策对某些人群的不利影响。我们提出了一个评估区分感知模型的基准框架。我们的框架由系统生成的偏向数据集组成,这些数据集类似于现实世界的数据,由贝叶斯网络方法创建。实验结果表明,我们可以通过已知的歧视度量来评估技术的质量,并且我们的灵活框架可以扩展到大多数真实数据集和公平性度量,以支持多样性的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Framework for Benchmarking Discrimination-Aware Models in Machine Learning
Discrimination-aware models in machine learning are a recent topic of study that aim to minimize the adverse impact of machine learning decisions for certain groups of people due to ethical and legal implications. We propose a benchmark framework for assessing discrimination-aware models. Our framework consists of systematically generated biased datasets that are similar to real world data, created by a Bayesian network approach. Experimental results show that we can assess the quality of techniques through known metrics of discrimination, and our flexible framework can be extended to most real datasets and fairness measures to support a diversity of assessments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信