系列:素描-推理-共情反应生成的集成渐进式工作流程

Guanqun Bi, Yanan Cao, Piji Li, Yuqiang Xie, Fang Fang, Zheng Lin
{"title":"系列:素描-推理-共情反应生成的集成渐进式工作流程","authors":"Guanqun Bi, Yanan Cao, Piji Li, Yuqiang Xie, Fang Fang, Zheng Lin","doi":"10.1109/ICASSP49357.2023.10094672","DOIUrl":null,"url":null,"abstract":"Empathy is a key ability for a human-like dialogue system. Inspired by social psychology, empathy includes both affective and cognitive aspects. Previous works on this topic have merely focused on recognizing emotions or modeling cognition with commonsense knowledge. Nevertheless, the generated results of these works still have a big gap with human-like empathetic responses. In this paper, we propose Seri, a SkEtching-Reasoning-Integrating framework for empathetic response generation. In particular, we define an empathy planner to capture and reason about multi-source information that considers cognition and affection. Further, we introduce a dynamic integrator module that allows the model dynamically select the appropriate information to generate empathetic responses. Experimental results on EmpatheticDialogue show that our method outperforms competitive baselines and generates responses with higher diversity and cognitive empathy levels.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seri: Sketching-Reasoning-Integrating Progressive Workflow for Empathetic Response Generation\",\"authors\":\"Guanqun Bi, Yanan Cao, Piji Li, Yuqiang Xie, Fang Fang, Zheng Lin\",\"doi\":\"10.1109/ICASSP49357.2023.10094672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Empathy is a key ability for a human-like dialogue system. Inspired by social psychology, empathy includes both affective and cognitive aspects. Previous works on this topic have merely focused on recognizing emotions or modeling cognition with commonsense knowledge. Nevertheless, the generated results of these works still have a big gap with human-like empathetic responses. In this paper, we propose Seri, a SkEtching-Reasoning-Integrating framework for empathetic response generation. In particular, we define an empathy planner to capture and reason about multi-source information that considers cognition and affection. Further, we introduce a dynamic integrator module that allows the model dynamically select the appropriate information to generate empathetic responses. Experimental results on EmpatheticDialogue show that our method outperforms competitive baselines and generates responses with higher diversity and cognitive empathy levels.\",\"PeriodicalId\":113072,\"journal\":{\"name\":\"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP49357.2023.10094672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10094672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

同理心是类人对话系统的关键能力。受社会心理学启发,共情包括情感和认知两个方面。以前关于这一主题的工作仅仅集中在识别情绪或用常识知识建模认知。然而,这些工作产生的结果与人类的移情反应还有很大的差距。在本文中,我们提出了Seri,一个用于共情反应生成的草图-推理-整合框架。特别是,我们定义了一个共情计划来捕获和推理考虑认知和情感的多源信息。此外,我们引入了一个动态积分器模块,允许模型动态选择适当的信息来产生共情反应。同理心对话的实验结果表明,我们的方法优于竞争基线,并产生更高多样性和认知同理心水平的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seri: Sketching-Reasoning-Integrating Progressive Workflow for Empathetic Response Generation
Empathy is a key ability for a human-like dialogue system. Inspired by social psychology, empathy includes both affective and cognitive aspects. Previous works on this topic have merely focused on recognizing emotions or modeling cognition with commonsense knowledge. Nevertheless, the generated results of these works still have a big gap with human-like empathetic responses. In this paper, we propose Seri, a SkEtching-Reasoning-Integrating framework for empathetic response generation. In particular, we define an empathy planner to capture and reason about multi-source information that considers cognition and affection. Further, we introduce a dynamic integrator module that allows the model dynamically select the appropriate information to generate empathetic responses. Experimental results on EmpatheticDialogue show that our method outperforms competitive baselines and generates responses with higher diversity and cognitive empathy levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信