基于线性系统理论的重构粒子群优化算法

Jian-lin Zhu, Jianhua Liu, Zihang Wang, Yuxiang Chen
{"title":"基于线性系统理论的重构粒子群优化算法","authors":"Jian-lin Zhu, Jianhua Liu, Zihang Wang, Yuxiang Chen","doi":"10.1109/CEC55065.2022.9870261","DOIUrl":null,"url":null,"abstract":"The original Particle Swarm Optimization (PSO) used two formulas to describe updating of particle's position and velocity, respectively, based on simulating the foraging behavior of bird swarm. The general improving methods on PSO are to adjust and optimize its parameters or combine new learning strategy to update velocity formula for the better performance. But these methods lack of theoretical analysis and make the algorithm more complex. This paper proposes a new formulation to restructure the particles' position updating behaviors based on linear system theory, and obtain a Restructuring PSO algorithm (RPSO). Compared with the conventional PSO algorithm, RPSO only uses one particle position updating formula, without velocity updating formula, and takes fewer parameters. In order to verify the effectiveness of RPSO, experiments on the CEC 2013 benchmark functions have been conducted to compare with four algorithms, and the final results show that proposed algorithm has a certain degree of competition.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Restructuring Particle Swarm Optimization algorithm based on linear system theory\",\"authors\":\"Jian-lin Zhu, Jianhua Liu, Zihang Wang, Yuxiang Chen\",\"doi\":\"10.1109/CEC55065.2022.9870261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The original Particle Swarm Optimization (PSO) used two formulas to describe updating of particle's position and velocity, respectively, based on simulating the foraging behavior of bird swarm. The general improving methods on PSO are to adjust and optimize its parameters or combine new learning strategy to update velocity formula for the better performance. But these methods lack of theoretical analysis and make the algorithm more complex. This paper proposes a new formulation to restructure the particles' position updating behaviors based on linear system theory, and obtain a Restructuring PSO algorithm (RPSO). Compared with the conventional PSO algorithm, RPSO only uses one particle position updating formula, without velocity updating formula, and takes fewer parameters. In order to verify the effectiveness of RPSO, experiments on the CEC 2013 benchmark functions have been conducted to compare with four algorithms, and the final results show that proposed algorithm has a certain degree of competition.\",\"PeriodicalId\":153241,\"journal\":{\"name\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC55065.2022.9870261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

原有的粒子群优化算法在模拟鸟群觅食行为的基础上,分别用两个公式来描述粒子位置和速度的更新。一般的改进方法是对粒子群的参数进行调整和优化,或者结合新的学习策略来更新速度公式以获得更好的性能。但这些方法缺乏理论分析,使算法更加复杂。提出了一种基于线性系统理论重构粒子位置更新行为的新公式,得到了一种重构粒子群算法(RPSO)。与传统粒子群算法相比,粒子群算法只使用一个粒子位置更新公式,不使用速度更新公式,需要的参数更少。为了验证RPSO算法的有效性,在CEC 2013基准函数上进行了实验,并与四种算法进行了比较,最终结果表明所提算法具有一定的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Restructuring Particle Swarm Optimization algorithm based on linear system theory
The original Particle Swarm Optimization (PSO) used two formulas to describe updating of particle's position and velocity, respectively, based on simulating the foraging behavior of bird swarm. The general improving methods on PSO are to adjust and optimize its parameters or combine new learning strategy to update velocity formula for the better performance. But these methods lack of theoretical analysis and make the algorithm more complex. This paper proposes a new formulation to restructure the particles' position updating behaviors based on linear system theory, and obtain a Restructuring PSO algorithm (RPSO). Compared with the conventional PSO algorithm, RPSO only uses one particle position updating formula, without velocity updating formula, and takes fewer parameters. In order to verify the effectiveness of RPSO, experiments on the CEC 2013 benchmark functions have been conducted to compare with four algorithms, and the final results show that proposed algorithm has a certain degree of competition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信