印刷电路板健康评估的新方法

J. Taco, Prayag Gore, T. Minami, Pradeep Kundu, J. Lee
{"title":"印刷电路板健康评估的新方法","authors":"J. Taco, Prayag Gore, T. Minami, Pradeep Kundu, J. Lee","doi":"10.36001/phme.2022.v7i1.3373","DOIUrl":null,"url":null,"abstract":"The demand for Printed circuit boards (PCBs) has increased due to the rapid change in technology in recent years. Consequently, PCBs health assessment and fault detection play an important role in improving productivity. This study proposed a novel method which focused on feature engineering for health assessment in PCBs. The performance of the proposed method has been validated using data obtained from PHM Europe 2022 data challenge. In this data challenge, PCBs health assessment needs to be performed with data from the Solder Paste Inspection (SPI) and the Automated Optical Inspection (AOI) machine. The challenge has three tasks: 1) Predict the labels of the AOI machine using the SPI data. 2) Using both the SPI and AOI machine data, predict the operator's verification that the AOI machine correctly detected a defect. 3) With the SPI and AOI data, predict the classification of the defective PCBs as either repairable or unrepairable. The component level features are extracted from the original SPI and AOI data which contain the pin level features to solve these tasks. Two machine learning-based classification models, i.e., Light Gradient Boosting Machine (LightGBM) and eXtreme Gradient Boosting (XGBoost), have been used for classification purposes. Training data given by the organizer was divided into 70% training and 30% validation. Based on the validation data, the highest F1-score was observed with LightGBM in Tasks 1 and 2, whereas, in Task 3, the highest F1-score was observed with the XGBoost model. Hence, the LightGBM model has been used in Tasks 1 and 2, and the XGBoost model was developed for Task 3.","PeriodicalId":422825,"journal":{"name":"PHM Society European Conference","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Novel Methodology for Health Assessment in Printed Circuit Boards\",\"authors\":\"J. Taco, Prayag Gore, T. Minami, Pradeep Kundu, J. Lee\",\"doi\":\"10.36001/phme.2022.v7i1.3373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The demand for Printed circuit boards (PCBs) has increased due to the rapid change in technology in recent years. Consequently, PCBs health assessment and fault detection play an important role in improving productivity. This study proposed a novel method which focused on feature engineering for health assessment in PCBs. The performance of the proposed method has been validated using data obtained from PHM Europe 2022 data challenge. In this data challenge, PCBs health assessment needs to be performed with data from the Solder Paste Inspection (SPI) and the Automated Optical Inspection (AOI) machine. The challenge has three tasks: 1) Predict the labels of the AOI machine using the SPI data. 2) Using both the SPI and AOI machine data, predict the operator's verification that the AOI machine correctly detected a defect. 3) With the SPI and AOI data, predict the classification of the defective PCBs as either repairable or unrepairable. The component level features are extracted from the original SPI and AOI data which contain the pin level features to solve these tasks. Two machine learning-based classification models, i.e., Light Gradient Boosting Machine (LightGBM) and eXtreme Gradient Boosting (XGBoost), have been used for classification purposes. Training data given by the organizer was divided into 70% training and 30% validation. Based on the validation data, the highest F1-score was observed with LightGBM in Tasks 1 and 2, whereas, in Task 3, the highest F1-score was observed with the XGBoost model. Hence, the LightGBM model has been used in Tasks 1 and 2, and the XGBoost model was developed for Task 3.\",\"PeriodicalId\":422825,\"journal\":{\"name\":\"PHM Society European Conference\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PHM Society European Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36001/phme.2022.v7i1.3373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PHM Society European Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/phme.2022.v7i1.3373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

近年来,由于技术的快速变化,对印刷电路板(pcb)的需求有所增加。因此,多氯联苯健康评估和故障检测在提高生产效率方面发挥着重要作用。本研究提出了一种基于特征工程的多氯联苯健康评价新方法。利用PHM Europe 2022数据挑战获得的数据验证了所提出方法的性能。在这个数据挑战中,pcb健康评估需要使用锡膏检测(SPI)和自动光学检测(AOI)机器的数据来执行。挑战有三个任务:1)使用SPI数据预测AOI机器的标签。2)同时使用SPI和AOI机器数据,预测操作员验证AOI机器正确检测到缺陷。3)根据SPI和AOI数据,预测不良pcb的可修复或不可修复分类。从包含引脚级特征的原始SPI和AOI数据中提取组件级特征来解决这些任务。两种基于机器学习的分类模型,即Light Gradient Boosting machine (LightGBM)和eXtreme Gradient Boosting (XGBoost),已经被用于分类目的。组织者提供的培训数据分为70%的培训和30%的验证。从验证数据来看,在Task 1和Task 2中,LightGBM模型的f1得分最高,而在Task 3中,XGBoost模型的f1得分最高。因此,在Task 1和Task 2中使用了LightGBM模型,而在Task 3中开发了XGBoost模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Methodology for Health Assessment in Printed Circuit Boards
The demand for Printed circuit boards (PCBs) has increased due to the rapid change in technology in recent years. Consequently, PCBs health assessment and fault detection play an important role in improving productivity. This study proposed a novel method which focused on feature engineering for health assessment in PCBs. The performance of the proposed method has been validated using data obtained from PHM Europe 2022 data challenge. In this data challenge, PCBs health assessment needs to be performed with data from the Solder Paste Inspection (SPI) and the Automated Optical Inspection (AOI) machine. The challenge has three tasks: 1) Predict the labels of the AOI machine using the SPI data. 2) Using both the SPI and AOI machine data, predict the operator's verification that the AOI machine correctly detected a defect. 3) With the SPI and AOI data, predict the classification of the defective PCBs as either repairable or unrepairable. The component level features are extracted from the original SPI and AOI data which contain the pin level features to solve these tasks. Two machine learning-based classification models, i.e., Light Gradient Boosting Machine (LightGBM) and eXtreme Gradient Boosting (XGBoost), have been used for classification purposes. Training data given by the organizer was divided into 70% training and 30% validation. Based on the validation data, the highest F1-score was observed with LightGBM in Tasks 1 and 2, whereas, in Task 3, the highest F1-score was observed with the XGBoost model. Hence, the LightGBM model has been used in Tasks 1 and 2, and the XGBoost model was developed for Task 3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信