使用重写规则将非文本对齐的SPMD程序转换为文本对齐的SPMD程序

Wadoud Bousdira
{"title":"使用重写规则将非文本对齐的SPMD程序转换为文本对齐的SPMD程序","authors":"Wadoud Bousdira","doi":"10.1109/HPCS48598.2019.9188223","DOIUrl":null,"url":null,"abstract":"The problem of analyzing parallel programs that access shared memory and use barrier synchronization is known to be hard to study. For a special case of those programs with minimal SPMD (Single Program Multiple Data) constructs, a formal definition of textually aligned barriers with an operational semantics has been proposed in previous work. Then, the textual alignement of the synchronization barriers that is defined prevents deadlocks. However, the textual alignement property is not verified by all SPMD programs. We propose a set of transformation rules using rewriting techniques which allows to turn a non-textually aligned program to be textually aligned. So, we can benefit of a simple static analysis for deadlock detection. We show that the rewrite rules form a terminating confluent system and we prove that the transformation rules preserve the semantics of the programs.","PeriodicalId":371856,"journal":{"name":"2019 International Conference on High Performance Computing & Simulation (HPCS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transforming non textually aligned SPMD programs into textually aligned SPMD programs by using rewriting rules\",\"authors\":\"Wadoud Bousdira\",\"doi\":\"10.1109/HPCS48598.2019.9188223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of analyzing parallel programs that access shared memory and use barrier synchronization is known to be hard to study. For a special case of those programs with minimal SPMD (Single Program Multiple Data) constructs, a formal definition of textually aligned barriers with an operational semantics has been proposed in previous work. Then, the textual alignement of the synchronization barriers that is defined prevents deadlocks. However, the textual alignement property is not verified by all SPMD programs. We propose a set of transformation rules using rewriting techniques which allows to turn a non-textually aligned program to be textually aligned. So, we can benefit of a simple static analysis for deadlock detection. We show that the rewrite rules form a terminating confluent system and we prove that the transformation rules preserve the semantics of the programs.\",\"PeriodicalId\":371856,\"journal\":{\"name\":\"2019 International Conference on High Performance Computing & Simulation (HPCS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on High Performance Computing & Simulation (HPCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCS48598.2019.9188223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCS48598.2019.9188223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分析访问共享内存并使用屏障同步的并行程序的问题是一个很难研究的问题。对于那些具有最小SPMD(单程序多数据)结构的程序的特殊情况,在以前的工作中已经提出了具有操作语义的文本对齐屏障的正式定义。然后,定义的同步屏障的文本对齐可以防止死锁。但是,并非所有SPMD程序都验证文本对齐属性。我们提出了一套使用重写技术的转换规则,允许将非文本对齐的程序转换为文本对齐的程序。因此,我们可以从死锁检测的简单静态分析中获益。我们证明了改写规则形成了一个终止合流系统,并证明了转换规则保持了程序的语义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transforming non textually aligned SPMD programs into textually aligned SPMD programs by using rewriting rules
The problem of analyzing parallel programs that access shared memory and use barrier synchronization is known to be hard to study. For a special case of those programs with minimal SPMD (Single Program Multiple Data) constructs, a formal definition of textually aligned barriers with an operational semantics has been proposed in previous work. Then, the textual alignement of the synchronization barriers that is defined prevents deadlocks. However, the textual alignement property is not verified by all SPMD programs. We propose a set of transformation rules using rewriting techniques which allows to turn a non-textually aligned program to be textually aligned. So, we can benefit of a simple static analysis for deadlock detection. We show that the rewrite rules form a terminating confluent system and we prove that the transformation rules preserve the semantics of the programs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信