基于置信度结构的预测性维修最优阈值失效概率的不确定性量化

Adolphus Lye, Alice Cicrello, E. Patelli
{"title":"基于置信度结构的预测性维修最优阈值失效概率的不确定性量化","authors":"Adolphus Lye, Alice Cicrello, E. Patelli","doi":"10.7712/120219.6364.18502","DOIUrl":null,"url":null,"abstract":"This paper seeks to analyze the imprecision associated with the statistical modelling method employed in devising a predictive maintenance framework on a plasma etching chamber. During operations, the plasma etching chamber may fail due to contamination as a result of a high number of particles that is present. Based on a study done, the particle count is observed to follow a Negative Binomial distribution model and it is also used to model the probability of failure of the chamber. Using this model, an optimum threshold failure probability is determined in which maintenance is scheduled once this value is reached during the operation of the chamber and that the maintenance cost incurred is the lowest. One problem however is that the parameter(s) used to define the Negative Binomial distribution may have uncertainties associated with it in reality and this eventually gives rise to uncertainty in deciding the optimum threshold failure probability. To address this, the paper adopts the use of Confidence structures (or C-boxes) in quantifying the uncertainty of the optimum threshold failure probability. This is achieved by introducing some variations in the p-parameter of the Negative Binomial distribution and then plotting a series of Cost-rate vs threshold failure probability curves. Using the information provided in these curves, empirical cumulative distribution functions are constructed for the possible upper and lower bounds of the threshold failure probability and from there, the confidence interval for the aforementioned quantity will be determined at 50%, 80%, and 95% confidence level.","PeriodicalId":153829,"journal":{"name":"Proceedings of the 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2019)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UNCERTAINTY QUANTIFICATION OF OPTIMAL THRESHOLD FAILURE PROBABILITY FOR PREDICTIVE MAINTENANCE USING CONFIDENCE STRUCTURES\",\"authors\":\"Adolphus Lye, Alice Cicrello, E. Patelli\",\"doi\":\"10.7712/120219.6364.18502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper seeks to analyze the imprecision associated with the statistical modelling method employed in devising a predictive maintenance framework on a plasma etching chamber. During operations, the plasma etching chamber may fail due to contamination as a result of a high number of particles that is present. Based on a study done, the particle count is observed to follow a Negative Binomial distribution model and it is also used to model the probability of failure of the chamber. Using this model, an optimum threshold failure probability is determined in which maintenance is scheduled once this value is reached during the operation of the chamber and that the maintenance cost incurred is the lowest. One problem however is that the parameter(s) used to define the Negative Binomial distribution may have uncertainties associated with it in reality and this eventually gives rise to uncertainty in deciding the optimum threshold failure probability. To address this, the paper adopts the use of Confidence structures (or C-boxes) in quantifying the uncertainty of the optimum threshold failure probability. This is achieved by introducing some variations in the p-parameter of the Negative Binomial distribution and then plotting a series of Cost-rate vs threshold failure probability curves. Using the information provided in these curves, empirical cumulative distribution functions are constructed for the possible upper and lower bounds of the threshold failure probability and from there, the confidence interval for the aforementioned quantity will be determined at 50%, 80%, and 95% confidence level.\",\"PeriodicalId\":153829,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2019)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7712/120219.6364.18502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7712/120219.6364.18502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在分析与统计建模方法相关的不精确性,该方法用于设计等离子体蚀刻室的预测性维护框架。在操作过程中,等离子体蚀刻室可能由于存在大量粒子的污染而失效。在此基础上,观察到颗粒数遵循负二项分布模型,并将其用于模拟腔室的失效概率。利用该模型,确定一个最佳阈值故障概率,当达到该阈值时,在腔室运行过程中,维修费用最低,并安排维修。然而,一个问题是,用于定义负二项分布的参数在现实中可能具有不确定性,这最终导致确定最佳阈值失效概率的不确定性。为了解决这个问题,本文采用置信结构(或c -box)来量化最佳阈值失效概率的不确定性。这是通过在负二项分布的p参数中引入一些变化,然后绘制一系列成本率与阈值失效概率曲线来实现的。利用这些曲线提供的信息,我们构建了阈值失效概率可能的上界和下界的经验累积分布函数,并由此确定了上述数量在50%、80%和95%置信水平上的置信区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UNCERTAINTY QUANTIFICATION OF OPTIMAL THRESHOLD FAILURE PROBABILITY FOR PREDICTIVE MAINTENANCE USING CONFIDENCE STRUCTURES
This paper seeks to analyze the imprecision associated with the statistical modelling method employed in devising a predictive maintenance framework on a plasma etching chamber. During operations, the plasma etching chamber may fail due to contamination as a result of a high number of particles that is present. Based on a study done, the particle count is observed to follow a Negative Binomial distribution model and it is also used to model the probability of failure of the chamber. Using this model, an optimum threshold failure probability is determined in which maintenance is scheduled once this value is reached during the operation of the chamber and that the maintenance cost incurred is the lowest. One problem however is that the parameter(s) used to define the Negative Binomial distribution may have uncertainties associated with it in reality and this eventually gives rise to uncertainty in deciding the optimum threshold failure probability. To address this, the paper adopts the use of Confidence structures (or C-boxes) in quantifying the uncertainty of the optimum threshold failure probability. This is achieved by introducing some variations in the p-parameter of the Negative Binomial distribution and then plotting a series of Cost-rate vs threshold failure probability curves. Using the information provided in these curves, empirical cumulative distribution functions are constructed for the possible upper and lower bounds of the threshold failure probability and from there, the confidence interval for the aforementioned quantity will be determined at 50%, 80%, and 95% confidence level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信