基于特征距离的低频语义关系分类框架

Andre Kenji Horie, M. Ishizuka
{"title":"基于特征距离的低频语义关系分类框架","authors":"Andre Kenji Horie, M. Ishizuka","doi":"10.1109/ICSC.2011.9","DOIUrl":null,"url":null,"abstract":"In the relation extraction of semantic relations, it is not uncommon to face settings in which the training data provides very few instances of some relation classes. This is mostly due to the high cost of producing such data and to the class imbalance problem, which may result in some classes presenting small frequencies even with a large annotated corpus. This work thus presents a semi-supervised bootstrapped method to expand this initial training dataset, using pattern matching to extract new candidate instances from the Web. The core of this process uses a multi view feature distance-based framework, which allows quantitative and qualitative analysis of intermediate steps of the process. Experimental results show that this framework provides better results in the relation classification task than the baseline, and the bootstrapped architecture improves the relation classification task as a whole for these low-frequency semantic relations settings.","PeriodicalId":408382,"journal":{"name":"2011 IEEE Fifth International Conference on Semantic Computing","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Feature Distance-Based Framework for Classification of Low-Frequency Semantic Relations\",\"authors\":\"Andre Kenji Horie, M. Ishizuka\",\"doi\":\"10.1109/ICSC.2011.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the relation extraction of semantic relations, it is not uncommon to face settings in which the training data provides very few instances of some relation classes. This is mostly due to the high cost of producing such data and to the class imbalance problem, which may result in some classes presenting small frequencies even with a large annotated corpus. This work thus presents a semi-supervised bootstrapped method to expand this initial training dataset, using pattern matching to extract new candidate instances from the Web. The core of this process uses a multi view feature distance-based framework, which allows quantitative and qualitative analysis of intermediate steps of the process. Experimental results show that this framework provides better results in the relation classification task than the baseline, and the bootstrapped architecture improves the relation classification task as a whole for these low-frequency semantic relations settings.\",\"PeriodicalId\":408382,\"journal\":{\"name\":\"2011 IEEE Fifth International Conference on Semantic Computing\",\"volume\":\"205 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Fifth International Conference on Semantic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSC.2011.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Fifth International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2011.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在语义关系的关系提取中,经常会遇到训练数据中某些关系类的实例很少的情况。这主要是由于产生此类数据的高成本和类不平衡问题,这可能导致某些类即使使用大量带注释的语料库也呈现小频率。因此,这项工作提出了一种半监督引导方法来扩展这个初始训练数据集,使用模式匹配从Web中提取新的候选实例。该过程的核心使用了基于多视图特征距离的框架,允许对过程的中间步骤进行定量和定性分析。实验结果表明,该框架在关系分类任务中取得了比基线更好的结果,并且自举架构从整体上提高了低频语义关系设置下的关系分类任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Distance-Based Framework for Classification of Low-Frequency Semantic Relations
In the relation extraction of semantic relations, it is not uncommon to face settings in which the training data provides very few instances of some relation classes. This is mostly due to the high cost of producing such data and to the class imbalance problem, which may result in some classes presenting small frequencies even with a large annotated corpus. This work thus presents a semi-supervised bootstrapped method to expand this initial training dataset, using pattern matching to extract new candidate instances from the Web. The core of this process uses a multi view feature distance-based framework, which allows quantitative and qualitative analysis of intermediate steps of the process. Experimental results show that this framework provides better results in the relation classification task than the baseline, and the bootstrapped architecture improves the relation classification task as a whole for these low-frequency semantic relations settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信