{"title":"使用阵列波导光栅路由器的负载平衡两级交换机","authors":"Xin Wang, K. Yeung","doi":"10.1109/HPSR.2007.4281264","DOIUrl":null,"url":null,"abstract":"Constructing a load balanced two-stage switch using optical switch fabrics must properly address the non-negligible amount of switch reconfiguration overhead. Unlike other optical switch fabrics, an NtimesN arrayed waveguide grating router (AWGR) allows N2 parallel connections (one on each wavelength) established between its N inputs and N outputs. This eliminates the need for switch reconfigurations. In this paper, we design a load-balanced two-stage switch using AWGRs. In particular, we adopt the efficient feedback-based two-stage switch architecture. The key issue is how to implement the joint sequence of N switch configurations logically in AWGR. We show that the resulting logical joint sequence inherits the original staggered symmetry property as well as the in-order packet delivery property. Since building a large sized AWGR is difficult, a systematic approach of constructing large AWGR from smaller AWGR modules is also proposed. Simulations show that the feedback-based two-stage switch using AWGRs gives an excellent overall delay-throughput performance under various traffic conditions.","PeriodicalId":258491,"journal":{"name":"2007 Workshop on High Performance Switching and Routing","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Load Balanced Two-Stage Switches Using Arrayed Waveguide Grating Routers\",\"authors\":\"Xin Wang, K. Yeung\",\"doi\":\"10.1109/HPSR.2007.4281264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constructing a load balanced two-stage switch using optical switch fabrics must properly address the non-negligible amount of switch reconfiguration overhead. Unlike other optical switch fabrics, an NtimesN arrayed waveguide grating router (AWGR) allows N2 parallel connections (one on each wavelength) established between its N inputs and N outputs. This eliminates the need for switch reconfigurations. In this paper, we design a load-balanced two-stage switch using AWGRs. In particular, we adopt the efficient feedback-based two-stage switch architecture. The key issue is how to implement the joint sequence of N switch configurations logically in AWGR. We show that the resulting logical joint sequence inherits the original staggered symmetry property as well as the in-order packet delivery property. Since building a large sized AWGR is difficult, a systematic approach of constructing large AWGR from smaller AWGR modules is also proposed. Simulations show that the feedback-based two-stage switch using AWGRs gives an excellent overall delay-throughput performance under various traffic conditions.\",\"PeriodicalId\":258491,\"journal\":{\"name\":\"2007 Workshop on High Performance Switching and Routing\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 Workshop on High Performance Switching and Routing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPSR.2007.4281264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Workshop on High Performance Switching and Routing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPSR.2007.4281264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Load Balanced Two-Stage Switches Using Arrayed Waveguide Grating Routers
Constructing a load balanced two-stage switch using optical switch fabrics must properly address the non-negligible amount of switch reconfiguration overhead. Unlike other optical switch fabrics, an NtimesN arrayed waveguide grating router (AWGR) allows N2 parallel connections (one on each wavelength) established between its N inputs and N outputs. This eliminates the need for switch reconfigurations. In this paper, we design a load-balanced two-stage switch using AWGRs. In particular, we adopt the efficient feedback-based two-stage switch architecture. The key issue is how to implement the joint sequence of N switch configurations logically in AWGR. We show that the resulting logical joint sequence inherits the original staggered symmetry property as well as the in-order packet delivery property. Since building a large sized AWGR is difficult, a systematic approach of constructing large AWGR from smaller AWGR modules is also proposed. Simulations show that the feedback-based two-stage switch using AWGRs gives an excellent overall delay-throughput performance under various traffic conditions.