论逻辑和同态闭包

M. Bodirsky, Thomas Feller, Simon Knäuer, S. Rudolph
{"title":"论逻辑和同态闭包","authors":"M. Bodirsky, Thomas Feller, Simon Knäuer, S. Rudolph","doi":"10.1109/LICS52264.2021.9470511","DOIUrl":null,"url":null,"abstract":"Predicate logic is the premier choice for specifying classes of relational structures. Homomorphisms are key to describing correspondences between relational structures. Questions concerning the interdependencies between these two means of characterizing (classes of) structures are of fundamental interest and can be highly non-trivial to answer. We investigate several problems regarding the homomorphism closure (homclosure) of the class of all (finite or arbitrary) models of logical sentences: membership of structures in a sentence’s homclosure; sentence homclosedness; homclosure characterizability in a logic; normal forms for homclosed sentences in certain logics. For a wide variety of fragments of first- and second-order predicate logic, we clarify these problems’ computational properties.","PeriodicalId":174663,"journal":{"name":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Logics and Homomorphism Closure\",\"authors\":\"M. Bodirsky, Thomas Feller, Simon Knäuer, S. Rudolph\",\"doi\":\"10.1109/LICS52264.2021.9470511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicate logic is the premier choice for specifying classes of relational structures. Homomorphisms are key to describing correspondences between relational structures. Questions concerning the interdependencies between these two means of characterizing (classes of) structures are of fundamental interest and can be highly non-trivial to answer. We investigate several problems regarding the homomorphism closure (homclosure) of the class of all (finite or arbitrary) models of logical sentences: membership of structures in a sentence’s homclosure; sentence homclosedness; homclosure characterizability in a logic; normal forms for homclosed sentences in certain logics. For a wide variety of fragments of first- and second-order predicate logic, we clarify these problems’ computational properties.\",\"PeriodicalId\":174663,\"journal\":{\"name\":\"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS52264.2021.9470511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS52264.2021.9470511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

谓词逻辑是指定关系结构类的首选。同态是描述关系结构之间对应关系的关键。关于这两种表征(类)结构的方法之间的相互依赖关系的问题是基本的兴趣,可以高度不平凡的回答。我们研究了逻辑句子的所有(有限或任意)模型类的同态闭包(同闭包)的几个问题:句子同闭包中结构的隶属性;句子homclosedness;逻辑中的同闭特性;某些逻辑中同闭句的标准形式。对于各种各样的一阶和二阶谓词逻辑片段,我们阐明了这些问题的计算性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Logics and Homomorphism Closure
Predicate logic is the premier choice for specifying classes of relational structures. Homomorphisms are key to describing correspondences between relational structures. Questions concerning the interdependencies between these two means of characterizing (classes of) structures are of fundamental interest and can be highly non-trivial to answer. We investigate several problems regarding the homomorphism closure (homclosure) of the class of all (finite or arbitrary) models of logical sentences: membership of structures in a sentence’s homclosure; sentence homclosedness; homclosure characterizability in a logic; normal forms for homclosed sentences in certain logics. For a wide variety of fragments of first- and second-order predicate logic, we clarify these problems’ computational properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信