对世界线形式主义中的费曼图求和

N. Ahmadiniaz, J. P. Edwards, Cristhiam Lopez-Arcos, M. Lopez-Lopez, C. M. Mata, J. Nicasio, C. Schubert
{"title":"对世界线形式主义中的费曼图求和","authors":"N. Ahmadiniaz, J. P. Edwards, Cristhiam Lopez-Arcos, M. Lopez-Lopez, C. M. Mata, J. Nicasio, C. Schubert","doi":"10.22323/1.416.0052","DOIUrl":null,"url":null,"abstract":"The worldline formalism shares with string theory the property that it allows one to write down master integrals that e(cid:27)ectively combine the contributions of many Feynman diagrams. While at the one-loop level these diagrams di(cid:27)er only by the position of the external legs along a (cid:28)xed line or loop, at multiloop they generally involve di(cid:27)erent topolo-gies. Here we summarize various e(cid:27)orts that have been made over the years to exploit this property in a computationally meaningful way. As a (cid:28)rst example, we show how to generalize the Landau-Khalatnikov-Fradkin formula for the non-perturbative gauge transformation of the fermion propagator in QED to the general 2 n - point case by pure manipulations at the path-integral level. At the parameter-integral level, we show how to integrate out individual photons in the low-energy expansion, and then sketch a recently introduced general framework for the analytical evaluation of such worldline integrals involving a reduction to quantum mechanics on the circle and the relation between inverse derivatives and Bernoulli polynomials.","PeriodicalId":151433,"journal":{"name":"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2022)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Summing Feynman diagrams in the worldline formalism\",\"authors\":\"N. Ahmadiniaz, J. P. Edwards, Cristhiam Lopez-Arcos, M. Lopez-Lopez, C. M. Mata, J. Nicasio, C. Schubert\",\"doi\":\"10.22323/1.416.0052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The worldline formalism shares with string theory the property that it allows one to write down master integrals that e(cid:27)ectively combine the contributions of many Feynman diagrams. While at the one-loop level these diagrams di(cid:27)er only by the position of the external legs along a (cid:28)xed line or loop, at multiloop they generally involve di(cid:27)erent topolo-gies. Here we summarize various e(cid:27)orts that have been made over the years to exploit this property in a computationally meaningful way. As a (cid:28)rst example, we show how to generalize the Landau-Khalatnikov-Fradkin formula for the non-perturbative gauge transformation of the fermion propagator in QED to the general 2 n - point case by pure manipulations at the path-integral level. At the parameter-integral level, we show how to integrate out individual photons in the low-energy expansion, and then sketch a recently introduced general framework for the analytical evaluation of such worldline integrals involving a reduction to quantum mechanics on the circle and the relation between inverse derivatives and Bernoulli polynomials.\",\"PeriodicalId\":151433,\"journal\":{\"name\":\"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2022)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.416.0052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.416.0052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

世界线形式主义与弦理论有一个共同的特性,即它允许人们写出主积分,这些积分有效地结合了许多费曼图的贡献。而在单回路级别,这些图只通过外部腿沿(cid:28)固定线或环路的位置来表示(cid:27),在多回路级别,它们通常涉及di(cid:27)事件拓扑。在这里,我们总结了多年来以计算上有意义的方式利用这一特性的各种方法。作为(cid:28)第一个例子,我们展示了如何将QED中费米子传播子的非微扰规范变换的Landau-Khalatnikov-Fradkin公式推广到一般的2n点情况,方法是在路径积分水平上进行纯操作。在参数积分层面,我们展示了如何在低能量展开中积分出单个光子,然后概述了最近引入的用于分析评估这种世界线积分的一般框架,涉及到圆上的量子力学以及逆导数与伯努利多项式之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Summing Feynman diagrams in the worldline formalism
The worldline formalism shares with string theory the property that it allows one to write down master integrals that e(cid:27)ectively combine the contributions of many Feynman diagrams. While at the one-loop level these diagrams di(cid:27)er only by the position of the external legs along a (cid:28)xed line or loop, at multiloop they generally involve di(cid:27)erent topolo-gies. Here we summarize various e(cid:27)orts that have been made over the years to exploit this property in a computationally meaningful way. As a (cid:28)rst example, we show how to generalize the Landau-Khalatnikov-Fradkin formula for the non-perturbative gauge transformation of the fermion propagator in QED to the general 2 n - point case by pure manipulations at the path-integral level. At the parameter-integral level, we show how to integrate out individual photons in the low-energy expansion, and then sketch a recently introduced general framework for the analytical evaluation of such worldline integrals involving a reduction to quantum mechanics on the circle and the relation between inverse derivatives and Bernoulli polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信