基于虚拟仪器的语音质量评估

R. Martínek, R. Kahankova, P. Bilik, J. Nedoma, M. Fajkus, Petr Blaha
{"title":"基于虚拟仪器的语音质量评估","authors":"R. Martínek, R. Kahankova, P. Bilik, J. Nedoma, M. Fajkus, Petr Blaha","doi":"10.1145/3177457.3177459","DOIUrl":null,"url":null,"abstract":"This paper introduces a program for objective and subjective evaluation of speech quality. Using this environment, a lot of speech recordings and various indoor and outdoor noises were processed. As a subjective speech evaluation method, the Dynamic time warping (DTW) method was selected, with PARCOR coefficients being chosen as symptom vectors. For the filtration of the noise in the recording, adaptive filtering based on LMS and RLS algorithms was used and the performance of the adaptive filtering was assessed. Similarity ranged from 70% to 95% for both algorithms. In terms of signal to noise ratio, the RLS algorithm ranged from 36 dB to 42 dB, while the LMS algorithm only varied from 20 dB to 29 dB.","PeriodicalId":297531,"journal":{"name":"Proceedings of the 10th International Conference on Computer Modeling and Simulation","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Speech Quality Assessment Based on Virtual Instrumentation\",\"authors\":\"R. Martínek, R. Kahankova, P. Bilik, J. Nedoma, M. Fajkus, Petr Blaha\",\"doi\":\"10.1145/3177457.3177459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a program for objective and subjective evaluation of speech quality. Using this environment, a lot of speech recordings and various indoor and outdoor noises were processed. As a subjective speech evaluation method, the Dynamic time warping (DTW) method was selected, with PARCOR coefficients being chosen as symptom vectors. For the filtration of the noise in the recording, adaptive filtering based on LMS and RLS algorithms was used and the performance of the adaptive filtering was assessed. Similarity ranged from 70% to 95% for both algorithms. In terms of signal to noise ratio, the RLS algorithm ranged from 36 dB to 42 dB, while the LMS algorithm only varied from 20 dB to 29 dB.\",\"PeriodicalId\":297531,\"journal\":{\"name\":\"Proceedings of the 10th International Conference on Computer Modeling and Simulation\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th International Conference on Computer Modeling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3177457.3177459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Conference on Computer Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3177457.3177459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了一个语音质量的客观和主观评价程序。在这种环境下,对大量的语音录音和各种室内外噪声进行了处理。选择动态时间规整(DTW)方法作为主观语音评价方法,以PARCOR系数作为症状向量。对录音中的噪声进行滤波,采用了基于LMS和RLS算法的自适应滤波,并对自适应滤波的性能进行了评价。两种算法的相似度在70%到95%之间。在信噪比方面,RLS算法的范围为36 dB ~ 42 dB,而LMS算法的范围仅为20 dB ~ 29 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speech Quality Assessment Based on Virtual Instrumentation
This paper introduces a program for objective and subjective evaluation of speech quality. Using this environment, a lot of speech recordings and various indoor and outdoor noises were processed. As a subjective speech evaluation method, the Dynamic time warping (DTW) method was selected, with PARCOR coefficients being chosen as symptom vectors. For the filtration of the noise in the recording, adaptive filtering based on LMS and RLS algorithms was used and the performance of the adaptive filtering was assessed. Similarity ranged from 70% to 95% for both algorithms. In terms of signal to noise ratio, the RLS algorithm ranged from 36 dB to 42 dB, while the LMS algorithm only varied from 20 dB to 29 dB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信