Qian Xu, Jingchen Wang, M. Leach, E. Lim, Zhao Wang, Zhenzhen Jiang, Rui Pei
{"title":"用于5G应用的紧凑型双带微带贴片天线","authors":"Qian Xu, Jingchen Wang, M. Leach, E. Lim, Zhao Wang, Zhenzhen Jiang, Rui Pei","doi":"10.1109/imbioc52515.2022.9790193","DOIUrl":null,"url":null,"abstract":"This work proposes a designed scheme for a compact large-span dual-band microstrip patch-slotted antenna for 5G wireless devices and broadband applications. Lossless FR4 is used as the substrate with a permittivity of 4.3, and the project is simulated based on CST STUDIO SUITE. The size of the proposed antenna is $26\\times 30\\times 1.536\\ \\text{mm}^{3}$. Rectangular slots, H-shaped slot with inner gap and partially covered ground plane are three main design techniques applied. The resonant frequency, S-Parameters and bandwidth in each area of the spectrum are three main criteria used to assess the antenna's performance. Referring to the optimization of the design, antenna parameter analysis is conducted by plotting series of $S_{11}$ curves representing variation in the parameter that matters to achieve the desired specifications. It turns out that the first resonant frequency in 5.8 GHz ISM spectrum is 5.76 GHz with a bandwidth of 160 MHz covering 5.696 ∼ 5.856 GHz. The second resonance in SHF spectrum is at 26 GHz with a broad bandwidth covering 22.4 ∼ 31.3 GHz.","PeriodicalId":305829,"journal":{"name":"2022 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Compact Dual-band Microstrip Patch Antenna for 5G Applications\",\"authors\":\"Qian Xu, Jingchen Wang, M. Leach, E. Lim, Zhao Wang, Zhenzhen Jiang, Rui Pei\",\"doi\":\"10.1109/imbioc52515.2022.9790193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a designed scheme for a compact large-span dual-band microstrip patch-slotted antenna for 5G wireless devices and broadband applications. Lossless FR4 is used as the substrate with a permittivity of 4.3, and the project is simulated based on CST STUDIO SUITE. The size of the proposed antenna is $26\\\\times 30\\\\times 1.536\\\\ \\\\text{mm}^{3}$. Rectangular slots, H-shaped slot with inner gap and partially covered ground plane are three main design techniques applied. The resonant frequency, S-Parameters and bandwidth in each area of the spectrum are three main criteria used to assess the antenna's performance. Referring to the optimization of the design, antenna parameter analysis is conducted by plotting series of $S_{11}$ curves representing variation in the parameter that matters to achieve the desired specifications. It turns out that the first resonant frequency in 5.8 GHz ISM spectrum is 5.76 GHz with a bandwidth of 160 MHz covering 5.696 ∼ 5.856 GHz. The second resonance in SHF spectrum is at 26 GHz with a broad bandwidth covering 22.4 ∼ 31.3 GHz.\",\"PeriodicalId\":305829,\"journal\":{\"name\":\"2022 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/imbioc52515.2022.9790193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/imbioc52515.2022.9790193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Compact Dual-band Microstrip Patch Antenna for 5G Applications
This work proposes a designed scheme for a compact large-span dual-band microstrip patch-slotted antenna for 5G wireless devices and broadband applications. Lossless FR4 is used as the substrate with a permittivity of 4.3, and the project is simulated based on CST STUDIO SUITE. The size of the proposed antenna is $26\times 30\times 1.536\ \text{mm}^{3}$. Rectangular slots, H-shaped slot with inner gap and partially covered ground plane are three main design techniques applied. The resonant frequency, S-Parameters and bandwidth in each area of the spectrum are three main criteria used to assess the antenna's performance. Referring to the optimization of the design, antenna parameter analysis is conducted by plotting series of $S_{11}$ curves representing variation in the parameter that matters to achieve the desired specifications. It turns out that the first resonant frequency in 5.8 GHz ISM spectrum is 5.76 GHz with a bandwidth of 160 MHz covering 5.696 ∼ 5.856 GHz. The second resonance in SHF spectrum is at 26 GHz with a broad bandwidth covering 22.4 ∼ 31.3 GHz.