第9章。纳米材料-血液相互作用:生物医学视角

Priti Singh, Sunil Kumar Singh
{"title":"第9章。纳米材料-血液相互作用:生物医学视角","authors":"Priti Singh, Sunil Kumar Singh","doi":"10.1039/9781788016308-00227","DOIUrl":null,"url":null,"abstract":"Within the short span of a decade, nanotechnology has gained tremendous recognition in diagnostic and therapeutic applications owing to its unique physiochemical properties. Whenever nanomaterials (NMs) are intravenously injected inside the biological system, NMs encounter the complex physiological environment of blood. Blood is a connective tissue consisting of blood cells, plasma proteins and lipoproteins, and a coagulation system that maintains the haemostasis of the body. NMs can interact with blood constituents and trigger patho-physiological events such as complement activation and thrombosis. Therefore, in this chapter, the roles of blood constituents in a biological system and interactions between NMs and blood components is critically reviewed. The shape, size, functionalisation and surface charge of NMs may be deciding factors for their adverse toxic effects. A critical analysis of nanomaterial–blood interactions will help with designing engineered NMs and manipulating their properties for impeccable applications in nanomedicine.","PeriodicalId":263032,"journal":{"name":"Nanoparticle–Protein Corona","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CHAPTER 9. Nanomaterial–Blood Interactions: A Biomedical Perspective\",\"authors\":\"Priti Singh, Sunil Kumar Singh\",\"doi\":\"10.1039/9781788016308-00227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Within the short span of a decade, nanotechnology has gained tremendous recognition in diagnostic and therapeutic applications owing to its unique physiochemical properties. Whenever nanomaterials (NMs) are intravenously injected inside the biological system, NMs encounter the complex physiological environment of blood. Blood is a connective tissue consisting of blood cells, plasma proteins and lipoproteins, and a coagulation system that maintains the haemostasis of the body. NMs can interact with blood constituents and trigger patho-physiological events such as complement activation and thrombosis. Therefore, in this chapter, the roles of blood constituents in a biological system and interactions between NMs and blood components is critically reviewed. The shape, size, functionalisation and surface charge of NMs may be deciding factors for their adverse toxic effects. A critical analysis of nanomaterial–blood interactions will help with designing engineered NMs and manipulating their properties for impeccable applications in nanomedicine.\",\"PeriodicalId\":263032,\"journal\":{\"name\":\"Nanoparticle–Protein Corona\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoparticle–Protein Corona\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/9781788016308-00227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoparticle–Protein Corona","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/9781788016308-00227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在短短十年的时间里,纳米技术由于其独特的物理化学性质,在诊断和治疗应用方面获得了巨大的认可。纳米材料在生物系统内静脉注射时,会遇到复杂的血液生理环境。血液是一种结缔组织,由血细胞、血浆蛋白和脂蛋白组成,是维持身体血流稳定的凝血系统。NMs可以与血液成分相互作用,引发补体激活和血栓形成等病理生理事件。因此,在本章中,血液成分在生物系统中的作用以及NMs与血液成分之间的相互作用被严格地回顾。NMs的形状、大小、功能化和表面电荷可能是其不良毒性作用的决定因素。对纳米材料-血液相互作用的批判性分析将有助于设计工程化的纳米材料,并操纵其特性,以在纳米医学中获得完美的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CHAPTER 9. Nanomaterial–Blood Interactions: A Biomedical Perspective
Within the short span of a decade, nanotechnology has gained tremendous recognition in diagnostic and therapeutic applications owing to its unique physiochemical properties. Whenever nanomaterials (NMs) are intravenously injected inside the biological system, NMs encounter the complex physiological environment of blood. Blood is a connective tissue consisting of blood cells, plasma proteins and lipoproteins, and a coagulation system that maintains the haemostasis of the body. NMs can interact with blood constituents and trigger patho-physiological events such as complement activation and thrombosis. Therefore, in this chapter, the roles of blood constituents in a biological system and interactions between NMs and blood components is critically reviewed. The shape, size, functionalisation and surface charge of NMs may be deciding factors for their adverse toxic effects. A critical analysis of nanomaterial–blood interactions will help with designing engineered NMs and manipulating their properties for impeccable applications in nanomedicine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信