{"title":"构造乘法线性逻辑的完全完备模型","authors":"A. Schalk, Hugh P. Steele","doi":"10.1109/LICS.2012.67","DOIUrl":null,"url":null,"abstract":"We demonstrate how the Hyland-Tan double glueing construction produces a fully complete model of the unit-free multiplicative fragment of Linear Logic when applied to any of a large family of degenerative ones. This process explains as special cases a number of such models which appear in the literature. In order to achieve this result, we make use of a tensor calculus for compact closed categories with finite biproducts. We show how the combinatorial properties required for a fully complete model are obtained by the construction adding to those already available from the original category.","PeriodicalId":407972,"journal":{"name":"2012 27th Annual IEEE Symposium on Logic in Computer Science","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Constructing Fully Complete Models for Multiplicative Linear Logic\",\"authors\":\"A. Schalk, Hugh P. Steele\",\"doi\":\"10.1109/LICS.2012.67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate how the Hyland-Tan double glueing construction produces a fully complete model of the unit-free multiplicative fragment of Linear Logic when applied to any of a large family of degenerative ones. This process explains as special cases a number of such models which appear in the literature. In order to achieve this result, we make use of a tensor calculus for compact closed categories with finite biproducts. We show how the combinatorial properties required for a fully complete model are obtained by the construction adding to those already available from the original category.\",\"PeriodicalId\":407972,\"journal\":{\"name\":\"2012 27th Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 27th Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2012.67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 27th Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2012.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Constructing Fully Complete Models for Multiplicative Linear Logic
We demonstrate how the Hyland-Tan double glueing construction produces a fully complete model of the unit-free multiplicative fragment of Linear Logic when applied to any of a large family of degenerative ones. This process explains as special cases a number of such models which appear in the literature. In order to achieve this result, we make use of a tensor calculus for compact closed categories with finite biproducts. We show how the combinatorial properties required for a fully complete model are obtained by the construction adding to those already available from the original category.