用蚁群算法评价高质量初始解对docr协调的影响

Angel Esteban Labrador Rivas, Fetnando Vladimir Cetna Nahuis, Luis Alfonso Gallego Pareja
{"title":"用蚁群算法评价高质量初始解对docr协调的影响","authors":"Angel Esteban Labrador Rivas, Fetnando Vladimir Cetna Nahuis, Luis Alfonso Gallego Pareja","doi":"10.1109/INDUSCON.2018.8627181","DOIUrl":null,"url":null,"abstract":"This paper evaluates the influence of a high-quality initial solution built with linear programming (LP) in the coordination of directional overcurrent relays (DOCRs) using an ant colony optimization (ACO) algorithm. The ACO-MV (Multi-variable) presented is an expansion of the ACO algorithm for continuous domain optimization problems adapted to mixed-variable optimization problems, summarized in two types of variables both continuous and categorical. In this work are two decision variables, TDS considered continuous and PS categorical. Normally, the initial solution is randomly generated, in addition, those results are compared by using the same random PS values for solving a relaxation of the DOCRs problem with LP to obtain new TDS values. To compare the advantage in the addition of LP for the initial solution this methodology evaluates three transmission systems (3, 8, and 15 Bus accordingly).","PeriodicalId":156866,"journal":{"name":"2018 13th IEEE International Conference on Industry Applications (INDUSCON)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the Influence of a High-Quality Initial Solution in the Coordination of DOCRs Using an ACO Algorithm\",\"authors\":\"Angel Esteban Labrador Rivas, Fetnando Vladimir Cetna Nahuis, Luis Alfonso Gallego Pareja\",\"doi\":\"10.1109/INDUSCON.2018.8627181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper evaluates the influence of a high-quality initial solution built with linear programming (LP) in the coordination of directional overcurrent relays (DOCRs) using an ant colony optimization (ACO) algorithm. The ACO-MV (Multi-variable) presented is an expansion of the ACO algorithm for continuous domain optimization problems adapted to mixed-variable optimization problems, summarized in two types of variables both continuous and categorical. In this work are two decision variables, TDS considered continuous and PS categorical. Normally, the initial solution is randomly generated, in addition, those results are compared by using the same random PS values for solving a relaxation of the DOCRs problem with LP to obtain new TDS values. To compare the advantage in the addition of LP for the initial solution this methodology evaluates three transmission systems (3, 8, and 15 Bus accordingly).\",\"PeriodicalId\":156866,\"journal\":{\"name\":\"2018 13th IEEE International Conference on Industry Applications (INDUSCON)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 13th IEEE International Conference on Industry Applications (INDUSCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDUSCON.2018.8627181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 13th IEEE International Conference on Industry Applications (INDUSCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDUSCON.2018.8627181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用蚁群优化算法评估了线性规划(LP)构建的高质量初始解对定向过流继电器(docr)协调的影响。本文提出的多变量蚁群算法(ACO- mv)是对连续域优化问题的蚁群算法的扩展,适用于混合变量优化问题,概括为连续和分类两种类型的变量。在这项工作中有两个决策变量,TDS被认为是连续的,PS是分类的。通常,初始解是随机生成的,并且使用相同的随机PS值对带有LP的DOCRs问题进行松弛求解,以获得新的TDS值。为了比较在初始解决方案中添加LP的优势,该方法评估了三个传输系统(相应的3,8和15总线)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of the Influence of a High-Quality Initial Solution in the Coordination of DOCRs Using an ACO Algorithm
This paper evaluates the influence of a high-quality initial solution built with linear programming (LP) in the coordination of directional overcurrent relays (DOCRs) using an ant colony optimization (ACO) algorithm. The ACO-MV (Multi-variable) presented is an expansion of the ACO algorithm for continuous domain optimization problems adapted to mixed-variable optimization problems, summarized in two types of variables both continuous and categorical. In this work are two decision variables, TDS considered continuous and PS categorical. Normally, the initial solution is randomly generated, in addition, those results are compared by using the same random PS values for solving a relaxation of the DOCRs problem with LP to obtain new TDS values. To compare the advantage in the addition of LP for the initial solution this methodology evaluates three transmission systems (3, 8, and 15 Bus accordingly).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信