火星勘测轨道器(MRO) ka波段(32 GHz)电信演示链路设计和规划

S. Shambayati, F. Davarian, D. Morabito
{"title":"火星勘测轨道器(MRO) ka波段(32 GHz)电信演示链路设计和规划","authors":"S. Shambayati, F. Davarian, D. Morabito","doi":"10.1109/AERO.2005.1559447","DOIUrl":null,"url":null,"abstract":"NASA is planning a Ka-band (32 GHz) engineering telemetry demonstration with Mars Reconnaissance Orbiter (MRO). Capabilities of Ka-band for use with deep space mission are demonstrated using the link optimization algorithms and weather forecasting. Furthermore, based on the performance of previous deep space missions with Ka-band downlink capabilities, experiment plans are developed for telemetry operations during superior solar conjunction. A general overview of the demonstration is given followed by a description of the experiment planning during cruise, the primary science mission and superior conjunction. As part of the primary science mission planning the expected data return for various data optimization methods is calculated. These results indicate that, given MRO's data rates, a link optimized to use of at most two data rates, subject to a minimum availability of 90%, performs almost as well as a link with no limits on the number of data rates with the same minimum availability requirement. Furthermore, the effects of forecasting on these link design algorithms are discussed","PeriodicalId":117223,"journal":{"name":"2005 IEEE Aerospace Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Link design and planning for Mars Reconnaissance Orbiter (MRO) Ka-band (32 GHz) telecom demonstration\",\"authors\":\"S. Shambayati, F. Davarian, D. Morabito\",\"doi\":\"10.1109/AERO.2005.1559447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NASA is planning a Ka-band (32 GHz) engineering telemetry demonstration with Mars Reconnaissance Orbiter (MRO). Capabilities of Ka-band for use with deep space mission are demonstrated using the link optimization algorithms and weather forecasting. Furthermore, based on the performance of previous deep space missions with Ka-band downlink capabilities, experiment plans are developed for telemetry operations during superior solar conjunction. A general overview of the demonstration is given followed by a description of the experiment planning during cruise, the primary science mission and superior conjunction. As part of the primary science mission planning the expected data return for various data optimization methods is calculated. These results indicate that, given MRO's data rates, a link optimized to use of at most two data rates, subject to a minimum availability of 90%, performs almost as well as a link with no limits on the number of data rates with the same minimum availability requirement. Furthermore, the effects of forecasting on these link design algorithms are discussed\",\"PeriodicalId\":117223,\"journal\":{\"name\":\"2005 IEEE Aerospace Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2005.1559447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2005.1559447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

NASA计划与火星勘测轨道飞行器(MRO)进行ka波段(32 GHz)工程遥测演示。利用链路优化算法和天气预报演示了ka波段用于深空任务的能力。此外,基于以往具有ka波段下行能力的深空任务的性能,制定了超日合期间遥测操作的实验计划。对演示进行了总体概述,然后描述了巡航期间的实验计划,主要科学任务和高级连接。作为初级科学任务规划的一部分,计算了各种数据优化方法的预期数据返回。这些结果表明,给定MRO的数据速率,优化为最多使用两个数据速率的链路,在最低可用性为90%的情况下,与具有相同最低可用性要求的数据速率数量没有限制的链路的性能几乎相同。此外,还讨论了预测对这些链路设计算法的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Link design and planning for Mars Reconnaissance Orbiter (MRO) Ka-band (32 GHz) telecom demonstration
NASA is planning a Ka-band (32 GHz) engineering telemetry demonstration with Mars Reconnaissance Orbiter (MRO). Capabilities of Ka-band for use with deep space mission are demonstrated using the link optimization algorithms and weather forecasting. Furthermore, based on the performance of previous deep space missions with Ka-band downlink capabilities, experiment plans are developed for telemetry operations during superior solar conjunction. A general overview of the demonstration is given followed by a description of the experiment planning during cruise, the primary science mission and superior conjunction. As part of the primary science mission planning the expected data return for various data optimization methods is calculated. These results indicate that, given MRO's data rates, a link optimized to use of at most two data rates, subject to a minimum availability of 90%, performs almost as well as a link with no limits on the number of data rates with the same minimum availability requirement. Furthermore, the effects of forecasting on these link design algorithms are discussed
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信