多线程在单核TMS320C6713 DSP上的实现

Srividya Rajaraman, Pritam S. Sirpotdar, Abhijeet Wavare, A. Patki
{"title":"多线程在单核TMS320C6713 DSP上的实现","authors":"Srividya Rajaraman, Pritam S. Sirpotdar, Abhijeet Wavare, A. Patki","doi":"10.1109/EIC.2015.7230723","DOIUrl":null,"url":null,"abstract":"Very Long Instruction Word is an architectural breakthrough in DSP architecture that caters to the real time constraints and efficient algorithm implementation. This paper brings out various loopholes namely latency, underutilization of functional units, use of NOPs and constraints of cross path in register file accessing present in such architecture. This paper proposes a technique to reduce the delay slots present in the pipeline due to NOPs and hence obtain reduction in code size and reduced latency. With the available functional units, thread level parallelism is introduced to enhance existing instruction level parallelism, thus addressing the issue of under utilization of functional units. Aforementioned issues are dealt with by the use of multithreading - concept frequently associated with multi-core DSPs and RTOS. This paper reports a novel technique of introducing a programming discipline in assembly coding to emulate multithreading in a single core DSP without use of OS and reduction in the number of clock cycles required is observed. Code snippets implemented using Code Composer Studio for TMS320C6713 illustrate the concepts.","PeriodicalId":101532,"journal":{"name":"2014 International Conference on Advances in Communication and Computing Technologies (ICACACT 2014)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multithreading implementation in a single core TMS320C6713 DSP\",\"authors\":\"Srividya Rajaraman, Pritam S. Sirpotdar, Abhijeet Wavare, A. Patki\",\"doi\":\"10.1109/EIC.2015.7230723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Very Long Instruction Word is an architectural breakthrough in DSP architecture that caters to the real time constraints and efficient algorithm implementation. This paper brings out various loopholes namely latency, underutilization of functional units, use of NOPs and constraints of cross path in register file accessing present in such architecture. This paper proposes a technique to reduce the delay slots present in the pipeline due to NOPs and hence obtain reduction in code size and reduced latency. With the available functional units, thread level parallelism is introduced to enhance existing instruction level parallelism, thus addressing the issue of under utilization of functional units. Aforementioned issues are dealt with by the use of multithreading - concept frequently associated with multi-core DSPs and RTOS. This paper reports a novel technique of introducing a programming discipline in assembly coding to emulate multithreading in a single core DSP without use of OS and reduction in the number of clock cycles required is observed. Code snippets implemented using Code Composer Studio for TMS320C6713 illustrate the concepts.\",\"PeriodicalId\":101532,\"journal\":{\"name\":\"2014 International Conference on Advances in Communication and Computing Technologies (ICACACT 2014)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Advances in Communication and Computing Technologies (ICACACT 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIC.2015.7230723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Advances in Communication and Computing Technologies (ICACACT 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIC.2015.7230723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超长指令字(Very Long Instruction Word)是DSP体系结构中的一个突破,它满足了实时约束和高效算法实现的要求。本文指出了该体系结构存在的各种漏洞,即延迟、功能单元利用率不足、nop的使用以及寄存器文件访问中的交叉路径约束。本文提出了一种技术来减少由于nop而出现在管道中的延迟槽,从而减少代码大小和减少延迟。在现有功能单元的基础上,引入线程级并行来增强现有的指令级并行,从而解决功能单元利用率不足的问题。前面提到的问题是通过使用多线程来解决的,这个概念经常与多核dsp和RTOS相关。本文报道了一种新的技术,在汇编编码中引入编程规则来模拟单核DSP中的多线程,而不使用操作系统,并且观察到所需时钟周期的数量减少。使用TMS320C6713的Code Composer Studio实现的代码片段说明了这些概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multithreading implementation in a single core TMS320C6713 DSP
Very Long Instruction Word is an architectural breakthrough in DSP architecture that caters to the real time constraints and efficient algorithm implementation. This paper brings out various loopholes namely latency, underutilization of functional units, use of NOPs and constraints of cross path in register file accessing present in such architecture. This paper proposes a technique to reduce the delay slots present in the pipeline due to NOPs and hence obtain reduction in code size and reduced latency. With the available functional units, thread level parallelism is introduced to enhance existing instruction level parallelism, thus addressing the issue of under utilization of functional units. Aforementioned issues are dealt with by the use of multithreading - concept frequently associated with multi-core DSPs and RTOS. This paper reports a novel technique of introducing a programming discipline in assembly coding to emulate multithreading in a single core DSP without use of OS and reduction in the number of clock cycles required is observed. Code snippets implemented using Code Composer Studio for TMS320C6713 illustrate the concepts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信