排列的有损压缩

Da Wang, A. Mazumdar, G. Wornell
{"title":"排列的有损压缩","authors":"Da Wang, A. Mazumdar, G. Wornell","doi":"10.1109/ISIT.2014.6874785","DOIUrl":null,"url":null,"abstract":"We investigate the lossy compression of permutations by analyzing the trade-off between the size of a source code and the distortion with respect to Kendall tau distance, Spearman's footrule, Chebyshev distance and ℓ1 distance of inversion vectors. We show that given two permutations, Kendall tau distance upper bounds the ℓ1 distance of inversion vectors and a scaled version of Kendall tau distance lower bounds the ℓ1 distance of inversion vectors with high probability, which indicates an equivalence of the source code designs under these two distortion measures. Similar equivalence is established for all the above distortion measures, every one of which has different operational significance and applications in ranking and sorting. These findings show that an optimal coding scheme for one distortion measure is effectively optimal for other distortion measures above.","PeriodicalId":127191,"journal":{"name":"2014 IEEE International Symposium on Information Theory","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lossy compression of permutations\",\"authors\":\"Da Wang, A. Mazumdar, G. Wornell\",\"doi\":\"10.1109/ISIT.2014.6874785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the lossy compression of permutations by analyzing the trade-off between the size of a source code and the distortion with respect to Kendall tau distance, Spearman's footrule, Chebyshev distance and ℓ1 distance of inversion vectors. We show that given two permutations, Kendall tau distance upper bounds the ℓ1 distance of inversion vectors and a scaled version of Kendall tau distance lower bounds the ℓ1 distance of inversion vectors with high probability, which indicates an equivalence of the source code designs under these two distortion measures. Similar equivalence is established for all the above distortion measures, every one of which has different operational significance and applications in ranking and sorting. These findings show that an optimal coding scheme for one distortion measure is effectively optimal for other distortion measures above.\",\"PeriodicalId\":127191,\"journal\":{\"name\":\"2014 IEEE International Symposium on Information Theory\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2014.6874785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2014.6874785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们通过分析源代码的大小与反演向量的Kendall tau距离、Spearman's footrule、Chebyshev距离和l1距离的失真之间的权衡来研究排列的有损压缩。我们证明了给定两种排列,Kendall tau距离的上界是反演向量的l1距离,Kendall tau距离的缩放版下界是反演向量的l1距离,具有高概率,这表明在这两种失真措施下的源代码设计是等价的。以上所有的失真度量都建立了类似的等价性,每一种失真度量在排序和排序中都具有不同的操作意义和应用。这些发现表明,一种失真度量的最优编码方案对于上述其他失真度量是有效的最优编码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lossy compression of permutations
We investigate the lossy compression of permutations by analyzing the trade-off between the size of a source code and the distortion with respect to Kendall tau distance, Spearman's footrule, Chebyshev distance and ℓ1 distance of inversion vectors. We show that given two permutations, Kendall tau distance upper bounds the ℓ1 distance of inversion vectors and a scaled version of Kendall tau distance lower bounds the ℓ1 distance of inversion vectors with high probability, which indicates an equivalence of the source code designs under these two distortion measures. Similar equivalence is established for all the above distortion measures, every one of which has different operational significance and applications in ranking and sorting. These findings show that an optimal coding scheme for one distortion measure is effectively optimal for other distortion measures above.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信