{"title":"基于多级全局力近似的多级力导向图绘制算法","authors":"Carl Crawford, C. Walshaw, A. Soper","doi":"10.1109/IV.2012.78","DOIUrl":null,"url":null,"abstract":"In this paper we discuss an efficiency saving for multilevel force directed placement algorithms. Typically such algorithms use a Barnes Hut octree (or sometimes a grid) in order to approximate global repulsive forces. Here we instead exploit the graph coarsening structure, already in place to facilitate the multilevel scheme, in order to provide a hierarchical approximation to the global forces. Not only is this more efficient, but also it takes better account of the graph structure than an octree or a grid.","PeriodicalId":264951,"journal":{"name":"2012 16th International Conference on Information Visualisation","volume":"330 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Multilevel Force-directed Graph Drawing Algorithm Using Multilevel Global Force Approximation\",\"authors\":\"Carl Crawford, C. Walshaw, A. Soper\",\"doi\":\"10.1109/IV.2012.78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we discuss an efficiency saving for multilevel force directed placement algorithms. Typically such algorithms use a Barnes Hut octree (or sometimes a grid) in order to approximate global repulsive forces. Here we instead exploit the graph coarsening structure, already in place to facilitate the multilevel scheme, in order to provide a hierarchical approximation to the global forces. Not only is this more efficient, but also it takes better account of the graph structure than an octree or a grid.\",\"PeriodicalId\":264951,\"journal\":{\"name\":\"2012 16th International Conference on Information Visualisation\",\"volume\":\"330 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 16th International Conference on Information Visualisation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IV.2012.78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 16th International Conference on Information Visualisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV.2012.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Multilevel Force-directed Graph Drawing Algorithm Using Multilevel Global Force Approximation
In this paper we discuss an efficiency saving for multilevel force directed placement algorithms. Typically such algorithms use a Barnes Hut octree (or sometimes a grid) in order to approximate global repulsive forces. Here we instead exploit the graph coarsening structure, already in place to facilitate the multilevel scheme, in order to provide a hierarchical approximation to the global forces. Not only is this more efficient, but also it takes better account of the graph structure than an octree or a grid.