一种新的基于计算粗糙集的心脏病分析特征提取方法

Dr. R. Prabha, G. Senthil, Dr. A. Lazha, D. Vijendrababu, Ms. D. Roopa
{"title":"一种新的基于计算粗糙集的心脏病分析特征提取方法","authors":"Dr. R. Prabha, G. Senthil, Dr. A. Lazha, D. Vijendrababu, Ms. D. Roopa","doi":"10.4108/EAI.7-6-2021.2308575","DOIUrl":null,"url":null,"abstract":"Cardiovascular disease is the most difficult disease to diagnose in the medical field. The diagnosis is often contingent on a judgment based on the grouping of vast amounts of clinical and pathological data. As a result of this complication, a number of researchers have based their efforts on determining the most cost-effective and accurate way to predict heart disease.In the case of heart disease, an accurate diagnosis at an early stage is critical, since time is of the essence when heart disease is detected at an inopportune time. Machine learning has evolved in recent years with a plethora of accurate and supporting resources in the medical domain, and it has offered the best support for predicting disease with proper training and research. The main goal of this study is to use a rough computational intelligence approach to find specific heart disease features among a large number of features. The output of the proposed feature selection method outperforms that of conventional feature selection approaches. The rough computation approach's output is evaluated using various heart disease data sets and checked using real-time data sets.","PeriodicalId":422301,"journal":{"name":"Proceedings of the First International Conference on Computing, Communication and Control System, I3CAC 2021, 7-8 June 2021, Bharath University, Chennai, India","volume":"99 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Novel Computational Rough Set Based Feature Extraction For Heart Disease Analysis\",\"authors\":\"Dr. R. Prabha, G. Senthil, Dr. A. Lazha, D. Vijendrababu, Ms. D. Roopa\",\"doi\":\"10.4108/EAI.7-6-2021.2308575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cardiovascular disease is the most difficult disease to diagnose in the medical field. The diagnosis is often contingent on a judgment based on the grouping of vast amounts of clinical and pathological data. As a result of this complication, a number of researchers have based their efforts on determining the most cost-effective and accurate way to predict heart disease.In the case of heart disease, an accurate diagnosis at an early stage is critical, since time is of the essence when heart disease is detected at an inopportune time. Machine learning has evolved in recent years with a plethora of accurate and supporting resources in the medical domain, and it has offered the best support for predicting disease with proper training and research. The main goal of this study is to use a rough computational intelligence approach to find specific heart disease features among a large number of features. The output of the proposed feature selection method outperforms that of conventional feature selection approaches. The rough computation approach's output is evaluated using various heart disease data sets and checked using real-time data sets.\",\"PeriodicalId\":422301,\"journal\":{\"name\":\"Proceedings of the First International Conference on Computing, Communication and Control System, I3CAC 2021, 7-8 June 2021, Bharath University, Chennai, India\",\"volume\":\"99 7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First International Conference on Computing, Communication and Control System, I3CAC 2021, 7-8 June 2021, Bharath University, Chennai, India\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/EAI.7-6-2021.2308575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First International Conference on Computing, Communication and Control System, I3CAC 2021, 7-8 June 2021, Bharath University, Chennai, India","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/EAI.7-6-2021.2308575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

心血管疾病是医学领域最难诊断的疾病。诊断通常是基于对大量临床和病理数据分组的判断。由于这种并发症,许多研究人员已经将他们的努力建立在确定最具成本效益和准确预测心脏病的方法上。就心脏病而言,早期的准确诊断至关重要,因为当心脏病在不合时宜的时候被发现时,时间是至关重要的。近年来,机器学习在医学领域有了大量准确和支持的资源,它为通过适当的培训和研究预测疾病提供了最好的支持。本研究的主要目标是使用粗略的计算智能方法在大量特征中找到特定的心脏病特征。所提出的特征选择方法的输出优于传统的特征选择方法。粗略计算方法的输出使用各种心脏病数据集进行评估,并使用实时数据集进行检查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Computational Rough Set Based Feature Extraction For Heart Disease Analysis
Cardiovascular disease is the most difficult disease to diagnose in the medical field. The diagnosis is often contingent on a judgment based on the grouping of vast amounts of clinical and pathological data. As a result of this complication, a number of researchers have based their efforts on determining the most cost-effective and accurate way to predict heart disease.In the case of heart disease, an accurate diagnosis at an early stage is critical, since time is of the essence when heart disease is detected at an inopportune time. Machine learning has evolved in recent years with a plethora of accurate and supporting resources in the medical domain, and it has offered the best support for predicting disease with proper training and research. The main goal of this study is to use a rough computational intelligence approach to find specific heart disease features among a large number of features. The output of the proposed feature selection method outperforms that of conventional feature selection approaches. The rough computation approach's output is evaluated using various heart disease data sets and checked using real-time data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信