Behnam Babagholami-Mohamadabadi, Sejong Yoon, V. Pavlovic
{"title":"基于bregman ADMM的分布式摄像机网络平均场变分推理","authors":"Behnam Babagholami-Mohamadabadi, Sejong Yoon, V. Pavlovic","doi":"10.1145/2789116.2802656","DOIUrl":null,"url":null,"abstract":"Bayesian models provide a framework for probabilistic modelling of complex datasets. However, many of such models are computationally demanding especially in the presence of large datasets. On the other hand, in sensor network applications, statistical (Bayesian) parameter estimation usually needs distributed algorithms, in which both data and computation are distributed across the nodes of the network. In this paper we propose a general framework for distributed Bayesian learning using Bregman Alternating Direction Method of Multipliers (B-ADMM). We demonstrate the utility of our framework, with Mean Field Variational Bayes (MFVB) as the primitive for distributed affine structure from motion (SfM).","PeriodicalId":113163,"journal":{"name":"Proceedings of the 9th International Conference on Distributed Smart Cameras","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mean field variational inference using bregman ADMM for distributed camera network\",\"authors\":\"Behnam Babagholami-Mohamadabadi, Sejong Yoon, V. Pavlovic\",\"doi\":\"10.1145/2789116.2802656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bayesian models provide a framework for probabilistic modelling of complex datasets. However, many of such models are computationally demanding especially in the presence of large datasets. On the other hand, in sensor network applications, statistical (Bayesian) parameter estimation usually needs distributed algorithms, in which both data and computation are distributed across the nodes of the network. In this paper we propose a general framework for distributed Bayesian learning using Bregman Alternating Direction Method of Multipliers (B-ADMM). We demonstrate the utility of our framework, with Mean Field Variational Bayes (MFVB) as the primitive for distributed affine structure from motion (SfM).\",\"PeriodicalId\":113163,\"journal\":{\"name\":\"Proceedings of the 9th International Conference on Distributed Smart Cameras\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Conference on Distributed Smart Cameras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2789116.2802656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Distributed Smart Cameras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2789116.2802656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mean field variational inference using bregman ADMM for distributed camera network
Bayesian models provide a framework for probabilistic modelling of complex datasets. However, many of such models are computationally demanding especially in the presence of large datasets. On the other hand, in sensor network applications, statistical (Bayesian) parameter estimation usually needs distributed algorithms, in which both data and computation are distributed across the nodes of the network. In this paper we propose a general framework for distributed Bayesian learning using Bregman Alternating Direction Method of Multipliers (B-ADMM). We demonstrate the utility of our framework, with Mean Field Variational Bayes (MFVB) as the primitive for distributed affine structure from motion (SfM).