飞基站覆盖优化启发式技术的性能评价

L. Mohjazi, M. Al-Qutayri, H. Barada, K. Poon
{"title":"飞基站覆盖优化启发式技术的性能评价","authors":"L. Mohjazi, M. Al-Qutayri, H. Barada, K. Poon","doi":"10.1109/ICECS.2011.6122343","DOIUrl":null,"url":null,"abstract":"Self-optimization of coverage is an essential element for successful deployment of enterprise femtocells. This paper evaluates the performance of genetic algorithm, particle swarm and simulated annealing heuristic techniques to solve a multi-objective coverage optimization problem when a number of femtocells are deployed to jointly provide indoor coverage. This paper demonstrates the different behaviors of the proposed algorithms. The results show that genetic algorithm and particle swarm have a higher potential of solving the problem compared to simulated annealing. This is due to their faster convergence time which is an important parameter for dynamic update of femtocells.","PeriodicalId":251525,"journal":{"name":"2011 18th IEEE International Conference on Electronics, Circuits, and Systems","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Performance evaluation of heuristic techniques for coverage optimization in femtocells\",\"authors\":\"L. Mohjazi, M. Al-Qutayri, H. Barada, K. Poon\",\"doi\":\"10.1109/ICECS.2011.6122343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-optimization of coverage is an essential element for successful deployment of enterprise femtocells. This paper evaluates the performance of genetic algorithm, particle swarm and simulated annealing heuristic techniques to solve a multi-objective coverage optimization problem when a number of femtocells are deployed to jointly provide indoor coverage. This paper demonstrates the different behaviors of the proposed algorithms. The results show that genetic algorithm and particle swarm have a higher potential of solving the problem compared to simulated annealing. This is due to their faster convergence time which is an important parameter for dynamic update of femtocells.\",\"PeriodicalId\":251525,\"journal\":{\"name\":\"2011 18th IEEE International Conference on Electronics, Circuits, and Systems\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 18th IEEE International Conference on Electronics, Circuits, and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECS.2011.6122343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 18th IEEE International Conference on Electronics, Circuits, and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.2011.6122343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

覆盖的自优化是成功部署企业飞基站的基本要素。本文评估了遗传算法、粒子群和模拟退火启发式技术在解决多个飞基站联合提供室内覆盖时的多目标覆盖优化问题中的性能。本文演示了所提出算法的不同行为。结果表明,与模拟退火相比,遗传算法和粒子群算法具有更高的求解潜力。这是由于它们更快的收敛时间,而收敛时间是动态更新的一个重要参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance evaluation of heuristic techniques for coverage optimization in femtocells
Self-optimization of coverage is an essential element for successful deployment of enterprise femtocells. This paper evaluates the performance of genetic algorithm, particle swarm and simulated annealing heuristic techniques to solve a multi-objective coverage optimization problem when a number of femtocells are deployed to jointly provide indoor coverage. This paper demonstrates the different behaviors of the proposed algorithms. The results show that genetic algorithm and particle swarm have a higher potential of solving the problem compared to simulated annealing. This is due to their faster convergence time which is an important parameter for dynamic update of femtocells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信